Finding a subset of a large
ensemble to maximize variance
for downscaling

Naomi Goldenson

with contributions from Andy Rhines (now at Netflix)



This study: California and western US

Ongoing dynamical downscaling at
UCLA using these domains was the
motivation here:
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We simulate regional climate for multiple reasons

Science: better understand regional
processes

Model development: evaluate and
improve simulations

Planning: data applied to climate
impacts assessments
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When people come looking for data...
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Building an ensemble of downscaled simulations

Focus today is on the multiple

ensemble member axis SSP 5-8.5
o) |
— can we do better than randomly SSP 3-7.0 § J J &
. . . 7] 6\0
sampling internal variance? K
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Two reasons to select ensemble members thoughtfully:

1. Making sure to include extreme events / seasons around which to build
storylines (aka plausible timeseries that you could use for scenario planning)
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Two reasons to select ensemble members thoughtfully:

1. Making sure to include extreme events / seasons around which to build
storylines (aka plausible timeseries that you could use for scenario planning)

2. Enable storylines to be tied to something physically meaningful — e.g. explain
the source of the regional variability from large-scale modes



Goal:

e Choose n large ensemble members that span the range of trends and variance,
and include some extreme extremes.

Approach:

1. Cluster members across m axes chosen based on physical reasoning.

2. Find all sets of n that are in different clusters from each other for all m items.

3. also limited to the members that are downscalable

4.  Add constraints for more extreme extremes until there is one set left



Goal:

e Choose n large ensemble members that span the range of trends and variance,

and include some extreme extremes. n=3
Approach:
1. Cluster members across m axes chosen based on physical reasoning. m=3 also

2. Find all sets of n that are in different clusters from each other for all m items.

3.  also limited to the members that are downscalable.\
10/100 from CESM2

4.  Add constraints for more extreme extremes until there is one set left




Large uncertainties in
California winter
precipitation:

Mostly unavoidable internal
variance, but reason to
believe some explanatory

power comes from ENSO. .

Therefore, some of my metrics will use the
phasing of ENSO variability.



Large uncertainties in
California winter
precipitation:

Mostly unavoidable internal
variance, but reason to

believe some explanatory
power comes from ENSO.

Strength of jet
extension mode
well-correlated
with cross-model
CA precipitation
changes.

__Dong & Leung, 2021 ms
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(a) Regress onto CA Prec
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And this jet-extention mode strength is related to the extent to
which a GCM becomes more EI Nifio-like in the future.
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The axes across which to cluster

1.  Decadally-smoothed ENSO variability phasing
2. Trend in El Nifo-like pattern
3. Local temperature and precipitation trends

BONUS:

4. Local temperature and precipitation extremes ~——— Use these to narrow it down until
there’s one combination left.



ENSO methods

First we need to define the PC
time-series for all ensemble
members with respect to one
consistent loading pattern for ENSO.

We use the first ensemble EOF —
calculated based on all 100
ensemble members SSTs stacked
together at once.

This is the stable pattern that reflects
this GCM’s ENSO behavior.
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Three clusters on the smoothed PC time-series separate
those with a lot of El Nino years in the earlier, mid, and
mid-late parts of the time-series.
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2. How strong a trend to a
more El Nino-like future?

10 20 30 40 50 60 70 80

Note: none of the
10 downscalable
ensemble
members fall in
the blue cluster.
So we’ll require
that we have at
least one from
each of the other
two clusters for
this measure.



3. Local precipitation trend

Aprecipitation
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4. Extremes:

Further limit our list of possible combinations of three ensemble
members so that at least one of the three must contain:

a) >=4 wet winters at least as wet as the 99th percentile

historical 90-day running maximum for the Sep-Aug year 271100 ensemble members

b) atleast two single annual max hot days that exceed the 23/100 ensemble members
historical 99th percentile

c) >=4 instances of a 10-year rolling mean below the 1st 47/100 ensemble members
historical percentile water year total



Having applied all these constraints:

['smbb.LE2-1151.008", 'smbb.LE2-1051.003', 'smbb.LE2-1011.007"]

Could easily tighten/loosen the extremes
specified until there’s only one possible set left.



Highlighting selected models

10

downscalable



Aprecipitation
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Weaker trend in El Nino-like SST pattern does not yield
any particular regional response
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Weaker trend in El Nifio-like SST pattern does not yield
any particular regional response, even if limited to DJF
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Positive-to-negative phase transition of IPO in
historical observations:

CanESM2 50member
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Not meaningful for interpretation, even if something similar

could be seen to be statistically significant
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Summary
Objective method shared for choosing a subset of large ensemble members to
downscale dynamically.

The down-scalable subset of the CESM2-LE does not adequately span tropical
trends in the larger LE.

Including large-scale factors, like tropical variability, might not have the expected
influence on regions like the western US if teleconnections are not properly
represented

but could still be helpful if a different region were being downscaled.



Extra Slides



Downscalable members:

'LE2-1111.006', 'LE2-1051.003', 'LE2-1091.005', 'LE2-1071.004",
'LE2-1151.008', 'LE2-1131.007', 'LE2-1011.001', 'LE2-1171.009',
'LE2-1031.002', 'LE2-1191.010']



NINO3 SST (°C): (o) Observational reconstruction (ERSST.v3)
running annual mean *Ri R2
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Figure 1. SST (°C) averaged over the NINO3 region (150°W-90°W, 5°S—5°N), for (a) the ERSST.v3 historical
reconstruction of Smith et al. [2008], and (b) the 20 consecutive centuries (numbered) from the CM2.1 pre-industrial
control run. Red/blue shading highlights departures of the running annual-mean SST from the multidecadal background
state, where the latter is obtained via a 211-month triangle smoother which transmits (25, 50, 75)% of the time series
amplitude at periods of (15, 20, 30) yr. Unshaded time series ends in Figure 1b indicate the half-width of the triangle
smoother; ends of the observed time series in Figure 1a are zero-padded prior to smoothing. The top of the gray bar is the
long-term mean, indicated at the bottom right of each plot. Labeled epochs are discussed in the text.

Wittenberg et al. (2009)



2. How strong a trend to a
more El Nino-like future?
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Note: none of the
10 downscalable
ensemble
members fall in
the blue cluster.
So we’ll require
that we have at
least one from
each of the other
two clusters for

70 80 this measure.




Capotondi et al (2020), Figure 3
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This 2016 CVC Working Group poster
introduced clustering across PCs,
which forms one of the metrics
described for distinguishing ensemble
members.

Clustering of SST Variability Across the Large Ensemble

Naomi Goldenson* and Andrew Rhines
Department of Atmospheric Sciences, University of Washington

* ngoldens@uw.edu

Abstract

A consistent picture of modes of variance across the
large ensemble is helpful for interpreting the model
climate, as well as applications like the selection of
ensemble members for downscaling. Calculating the
empirical orthogonal functions (EOFs) for each
ensemble member independently yields similar but non-
identical patterns for the principal modes of variance.
We show the results of calculating one consistent set of
EOFs using all of the ensemble members at once. Then
we use the results to conduct a clustering exercise on
the (consistently defined) principal components (PCs).
This can be done in the time as well as frequency
domains. Finally we show the application of the
approach to select ensemble members to force
prescribed sea surface temperature simulations to study
Northwest regional climate. The method selects
ensemble members that span a range of regional
trends, while preserving information about the relative
frequency of similarly clustered ensemble members.

Motivation

As an example, the loading pattern for the Pacific
Decadal Oscillation (PDO) in 21st century projections
varies from one ensemble member to the next.

Mean pattern from all ensemble members, with contours for standard deviation.
o R i)
D 2

m individual ensemble members.

Stable PDO pattern calculated from entire
ensemble together (see next column):
cor1

Consistent Empirical Orthogonal
Functions (EOFs)

Methods

* Monthly data, with seasonal cycle removed in blocks of 30-

years
Can be detrended, but here it is not because we are

interested in the variation in trend due to internal variability

in the 21st century
We low-pass filtered to remove the high-frequency
variability

Then we stack all of the ensemble members in the time

dimension

samping s

Machine memory can be a constraint to perform a sit

value decomposition (SVD) on a matrix of this size. We use
a sequential SVD method developed for machine learning

applications, which makes this feasible.

Results

e Calculated this way,
without removing the
trend, the first two EOFs ..
are significant. 2

® Both contain some .
component of the ENSO z ]

ingular

o

signature, one S ﬂQ{é:
convolved with the N
frend. e e

Identification of Clustered Dynamics

‘Soloct somo umbor o

o, . oy
Methods: K-Medoids
J—
rememasa
o Calculate a fixed i
number of clusters on |
the distance metric of il
choice.

The medoid is the most L
representative member - .
of the cluster. h

‘ PAM Algorithm

Results

We show results for two methods of determining distance between clusters,

in each case determining three clusters.

Clustering on PC time series

 Here we used only the last 30 yrs.

o The medoids alone are shown in
the bottom subplot of each set.

terms of regional trends.

.

.

/ Regional Trends for Cluster Medoids

Here we use the clusters from the first PC timeseries and
determine where the cluster medoid ensemble members fall in

Clustering in frequency domain

o We first calculate the power
spectrum for a principal
component.

We use those log-frequency space
differences as the distance metric
for the clustering algorithm.

This may select for ensemble
members with distinct decadal
variability as opposed to those that
are simply out-of-phase.

Here we start from EOF 1, but
without filtering out the high
frequency variability.

Northwest
I

Trends Across the Ensemble

Kernel Density

2070-2100) minus

1970-2000

a’l&“&‘ &

SIS & & S

[T

SR

Precipitation Change (mm/day)

SR &
Temperature Change (K)

I R




