

CESM CLIMATE VARIABILITY AND CHANGE WORKING GROUP MEETING 17 February 2022

Mechanisms of Fast Walker Circulation Responses to CO₂ Forcing

Kezhou (Melody) Lu¹, Jie He¹, Boniface Fosu² and Maria Rugenstein³

¹ School of Earth and Atmospheric Sciences, Georgia Institute of Technology
 ² Lamont-Doherty Earth Observatory
 ³Department of Atmospheric Sciences, Colorado State University

https://doi.org/10.1029/2021GL095708

Introduction Strengthening or **Weakening** of the WC?

As global CO₂ increases...

- Deep convection moves eastward and weakens.
- Weakening of trade winds
- Less upwelling

(Lian et al. 2018)

- Deep convection increases.
- Walker circulation expands westward
- Strengthening of trade winds
- Stronger upwelling

Introduction Strengthening or **Weakening** of the WC?

Most climate models project a **long-term weakening** of WC in response to CO₂

Percentage change in global-mean column-integrated (a) water vapor and (b) precipitation vs the global-mean change in surface air temperature

(Held and Soden. 2006)

Introduction Strengthening or **Weakening** of the WC?

The observations have shown a **strengthening** of the WC since 1979 which could be contributed by **internal variability**

-1.5

-1.0

-0.5

Spatial distributions of trends in SST and wind at 850 hPa during 1980-2015 from observational dataset Scatter plot of Interdecadal Pacific Oscillation (IPO) index trends and PWC index trends during 1980-2015 among 100 MPI-GE members.

0.0

IPO Trend [K (36yr)⁻¹]

e) Correlation of PWC and IPO

CC = -0.69

0.5

1.0

(Wu et al. 2021)

Introduction Fast and Slow changes of the WC

Different mechanisms drive the changes of the WC at different time scales

Introduction Fast and Slow changes of the WC

How do we separate fast and slow components?

Fixed-SST experiment or Fully coupled simulation with abrupt forcing

Fully coupled GCM

Introduction Motivations of this study

- The interaction between the WC and SST especially during the fast response period is rarely investigated.
- What contribute to the inter-model discrepancy in the fast WC changes?

Weakening

Changes in SST (shadings) and surface winds (vectors) averaged **over the first two years** in abrupt 4xCO₂ experiment for randomly selected CMIP5 models

Method

CMIP5: 27 abrupt $4xCO_2$ model simulations from CMIP5 project. All the models are separated into the cold-group models (**CMIP5 CG**) and the warm-group models (**CMIP5 WG**).

CESM1 LE: Community Earth System Model v1 (CESM1) fully coupled model with 2° atmosphere and 1° ocean as resolution. The 120 ensembles are used to **eliminate internal variability**.

Method

CMIP5: 27 abrupt $4xCO_2$ model simulations from CMIP5 project. All the models are separated into the cold-group models (**CMIP5 CG**) and the warm-group models (**CMIP5 WG**).

CESM1 LE: Community Earth System Model v1 (CESM1) fully coupled model with 2° atmosphere and 1° ocean as resolution. The 120 ensembles are used to **eliminate internal variability**.

```
Changes(\Delta): 4 \times CO_2 – pre-industrial control
```

```
Total response:
```

Changes averaged over the last 30 years of the simulations

Fast response:

```
Any changes within the first two years
```

Slow response = Total response – **Fast response**

Method

Separation of CMIP5 cold-group models CG and warm-group models WG

SST changes in Niño 3.4 region among all 27 models in the first two years

Why does fast response differ among models ?

1. Is the discrepancy robust (not contaminated by internal variability)?

The WC strength is calculated as the difference of the 500 hPa pressure velocity between the Indian-West Pacific ($50^{\circ}-150^{\circ}E$ and $10^{\circ}S-10^{\circ}N$) and the central-east Pacific ($210^{\circ}-270^{\circ}E$ and $10^{\circ}S-10^{\circ}N$)

2. Does parent piControl simulations' ENSO state matter?

Model	E or L	Intensity	Model	E or L	Intensity
CMIP5 CG					
NorESM1-ME	Е	1.06	CCSM4		
BNU-ESM	L	-1.33	CanESM2		
ACCESS1-0			NorESM1-M		
CNRM-CM5-2			IPSL-CM5A-LR	E	1.34
FGOALS-s2			IPSL-CM5A-MR		
inmcm4	Е	0.522	MPI-ESM-P	E	1.52
CNRM-CM5	Е	1.00	GFDL-ESM2M		
CMIP5 WG					
GISS-E2-H			MPI-ESM-MR	E	1.22
IPSL-CM5B-LR			bcc-csm1-1		
HadGEM2-ES			MIROC5		
ACCESS1-3			IPSL-CM5A-LR		
MIROC-ESM			bcc-csm1-1-m	E	1.62
GISS-E2-R			MRI-CGCM3		
CSIRO-Mk3-6-0					

Maybe No

The ENSO state in the parent pre-industrial simulations.

E: El Niño is happening when quadrupling CO₂

L: La Niña is happening when quadrupling CO₂

3. Is the discrepancy due to different land-sea thermal contrast among models?

No

Relationship between surface wind response in the warm pool and land-sea thermal contrast during the first three months 4. Does model simulate different air-sea coupling strength?

Quantify the models' air-sea interactions strength in the pre-industrial runs

R(Y, X): linear regression coefficients between two time series X and Y

A high Total FB indicates a more sensitive air-sea interaction

4. Does model simulate different air-sea coupling strength skills?

$$TFI \qquad BFI \qquad ZFI$$

$$Total FB = \frac{1}{\rho c_p h} \left(R(SW, SST) + R(LH, SST) \right) + \frac{W}{h} R(U_{850}, SST) R(D, U_{850}) R(T_e, D) + \left(-\frac{\partial \overline{SST}}{\partial x} R(U_o, SST) \right)$$

• CG models simulate stronger air-sea coupling

Yes

• Bjerknes feedback is easier to be triggered in the CG models than in the WG models

Comparison between CESM1 LE and CESM2 LE

From fast to slow response

Results

Time evolution of equatorial Pacific subsurface ocean temperature averaged over 2°S to 2°N

- Strong anomalous easterlies keep piling up warm water in the western equatorial Pacific
- Background warming gradually erases anomalous easterlies
- Downwelling oceanic Kelvin wave transports warm water from west to east

Results Slow response

- Slow response features a **weakening** in most part of the WC
- Pattern of changes are similar across model groups

Summary

CESM CLIMATE VARIABILITY AND CHANGE WORKING GROUP MEETING 17 February 2022

Q & A

Find out more in our paper:

Lu, K., He, J., Fosu, B., & Rugenstein, M. (2021). Mechanisms of fast Walker circulation responses to CO2 forcing. Geophysical Research Letters, 48, e2021GL095708.

Contact me here:

kezhou.lu@eas.gatech.edu

Extra Fast response

First two years after abrupt 4xCO₂

Extra Fast response – CESM1 LE and CESM2 LE

