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‘a limit to the accuracy with which forecasting is possible’ 
Lorenz (1969)
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Time
•Pc(t) represents the control (background) 
distribution. It is independent of any 
particular initial state. 

•Pe(t) is an ensemble of predicted states 
evolving from a specific tight cluster of initial 
conditions. 

•A comparison of Pe(t) to Pc(t) represents 
‘‘initial-value predictability’’ (Lorenz 1975). 
This is what a weather forecast is.Pc(t) Pe(t)Some 

climate 
variable
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Pc(t) Pe(t)Some 
climate 
variable

•What if Pc(t) changes with time due to 
changing boundary conditions?

Pc(0)

{
•a comparison of Pc(t) to Pc(0) corresponds 
to ‘‘forced predictability” (Lorenz 1975). 
This is what a climate change prediction is.

On predictability



Time •Historically, in seasonal/decadal 
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On predictability

•(note how to compare Pe(t), we need an 
ensemble of forecast runs. Also allows to 
make a probabilistic forecast. 

If only have one forecast run, this is a 
deterministic forecast)
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How to measure predictability? 

Observations: The observed divergence in time of analogs (i.e., similar observed 
atmospheric states) provides an estimate of forecast divergence. 

Close analogs are not expected without a much, much longer 
observational record (Lorenz 1969)
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estimate of theoretical upper limit of predictability.



How to measure predictability? 

Observations: The observed divergence in time of analogs (i.e., similar observed 
atmospheric states) provides an estimate of forecast divergence. 

Close analogs are not expected without a much, much longer 
observational record (Lorenz 1969)

Model:
Can use a model to predict observations, or to predict itself 
(‘perfect model’ experiments).  

Uncertainty in a forecast arises from a) unknown initial 
conditions, b) imperfect model physics, c) growth from 
infinitesimal errors (chaos) 

‘Perfect model’ experiments eliminate a & b, can be used as 
estimate of theoretical upper limit of predictability.

Can also use control runs to examine ‘diagnostic predictability’ -> 
generally assess fraction of variance explained by low frequency 
variability, or persistence characteristics
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How to quantify predictability? 

Metrics:
Two aspects of Pe(t) and Pc(0) to compare to each other: forecast spread 
(its growth), and the forecast anomaly (signal). Predictability metrics tend 
to asses one or the other, in general good to use more than one. 

Spread: 
Root mean square error (RMSE),  
or normalized RMSE (RMSE)):  

Prognostic Potential Predictability (PPP): 

Signal: 
Anomaly correlation coefficient (ACC)  

Both mean and spread 
Relative entropy (RE) 

Time

Pc(t) Pe(t)

Pc(0) {



Forecast Ensemble
Control

•Volume: continuous predictability 
for 3-4 years. 

•Rapid loss of predictability in 
June-July (albedo?)
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•Lower for area than for volume. 
  
•Area: fast initial decline (first 1-2 
seasons), re-emergence weak 
predictability at times for 1-3 years. 
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Initial Value predictability: Arctic

Day et al, 2016 & Tietsche et al, 2014

normalized RMSE from July 1 IC forecasts

Perfect model predictability shows similar patterns across 
different GCMs, but also differences in magnitude

Forecast lead time —> Forecast lead time —>



Initial Value predictability: Antarctica

Holland et al, 2013

Forecast lead time —>



Predictability flavors: perfect model results for polar 
sea ice/upper ocean

 Day/weekly 
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Annual 

Decadal

forecast lead time:

Initial value predictability}

Forced (boundary) predictability

Diminishing to none (mostly)



Predictability flavors: perfect model results for polar 
sea ice/upper ocean

 Day/weekly 

Seasonal 

Annual 

Decadal

forecast lead time:

Initial value predictability}

Forced (boundary) predictability

Initial value : forecast skill depends on quality of initial conditions 
(ICs) and model physics that simulate evolution of ICs 

Forced : forecast skill depends on how well you simulate future 
climate change: right sensitivity to changing boundary conditions, 
right amount of forcing.

Diminishing to none (mostly)



Mechanisms (what actually drives initial value predictability)

Sea ice thickness (especially summer) and upper 
ocean heat content/SSTs (especially winter), ocean 

dynamics.

Day et al, 2014
Forecast lead time —>

‘Data-denial experiment’



Mechanisms (what actually drives initial value predictability)

Sea ice thickness (especially summer) and upper 
ocean heat content/SSTs (especially winter), ocean 

dynamics.

Lindsay et al, 2008Day et al, 2014
Forecast lead time —>

‘Data-denial experiment’
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Mechanisms (what actually drives initial value predictability)

Sea ice thickness (especially summer) and upper 
ocean heat content/SSTs (especially winter), ocean 

dynamics.

Antarctica

SSTs

Ice thickness

WinterSummer



Models are good and all but… how about the real world?

Hindcasts (retrospective forecasts)

Several studies in the last few years (Chevallier et al, 2013, Sigmond et al, 
2013, Wang et al 2013, Msadek et al, 2014, Peterson et al 2015) study 

seasonal hindcasts of Arctic sea ice over satellite era. 

 They all show some level of skill in seasonal forecasts of summer/September 
sea ice extent
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Chevallier et al, 2013

May forecasts of 
September SIE  

r=0.6
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Hindcasts (retrospective forecasts)

Several studies in the last few years (Chevallier et al, 2013, Sigmond et al, 
2013, Wang et al 2013, Msadek et al, 2014, Peterson et al 2015) study 

seasonal hindcasts of Arctic sea ice over satellite era. 

 They all show some level of skill in seasonal forecasts of summer/September 
sea ice extent



Models are good and all but… how about the real world?

Sigmond et al 2013 Wang et al 2013 Msadek et al 2014

Forecasts of real world sea ice 
area/extent skillful for a season or 
two… perfect model shows longer 

skill

Day et al, 2014

Hindcasts (retrospective forecasts)



Models are good and all but… how about the real world?

Seasonal predictability: the Sea Ice Outlook
Current forecasts

Observed(
September(
extent(
compared(with(
median(and(
IQR(of(July(SIO(
predictions,(
2008–2016

updated(from(
Hamilton(and(
Stroeve(2016



Models are good and all but… how about the real world?

Seasonal predictability: the Sea Ice Outlook
Current forecasts

september SIE
 sigma (detrended)



Models are good and all but… how about the real world?

Bushuk et al 2018 
Predictability gap between 

perfect model skill and 
observational skill using 

same model 
Why?  



The predictability gap between perfect models and the real world 
(hindcasts/forecasts)

Remember… 

Uncertainty in a forecast arises from a) unknown initial 
conditions, b) imperfect model physics, c) growth from 
infinitesimal errors (chaos)



The predictability gap between perfect models and the real world 
(hindcasts/forecasts)

Remember… 

Uncertainty in a forecast arises from a) unknown initial 
conditions, b) imperfect model physics, c) growth from 
infinitesimal errors (chaos)

Good models, but poor observations* (i.e., Initial Conditions) 

Or poor models, but good observations/ICs? 

Or poor models and poor observations/ICs?

*and assimilation techniques to incorporate observations to model



Chevallier et al (2016)

Annual volume of sea 

Uncertainty in sea ice reanalysis/reconstruction 
products (from which initial conditions are taken)



Mean March 2003-2007 Sea Ice Thickness (m) in global 
ocean-sea ice reanalyses with assimilation of sea ice 
concentration

Chevallier et al (2016)

Uncertainty in sea ice reanalysis/reconstruction 
products (from which initial conditions are taken)



Atmospheric reanalysis in polar regions are known 
to have less fidelity than in other regions*

Lindsay et al 2014

*Important because these are used to force ice-
ocean models to derive initial conditions

Precipitation



(In) Direct observations of sea ice thickness: 
sparse in time, uncertain

Sea ice thickness anomalies for April 2017 
from 3 different algorithms using the same 

satellite sea ice freeboard retrievals

Sea ice thickness anomalies in CICE for April 
2017 (obtained from running CICE with 

November 2016 CS2 thickness and forcing with 
NCEP2 reanalysis)
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(chaotic error growth)

On forecast uncertainty

t=0 t=T

Forecast lead time —>

In
iti

al
 c

on
di

tio
ns

 —
>

How good are the models?



Obs

Model A
Model B

t=0 t=T

Forecast lead time —>

In
iti

al
 c

on
di

tio
ns

 —
>

On forecast uncertainty

How good are the models?



Obs

Model A
Model B

t=0 t=T

‘Model uncertainty’

Forecast lead time —>

In
iti

al
 c

on
di

tio
ns

 —
>

On forecast uncertainty

How good are the models?



Obs

Model A

Model B

t=0 t=T

Forecast lead time —>

In
iti

al
 c

on
di

tio
ns

 —
>

On forecast uncertainty

How good are the models?



Obs

Model A

Model B

t=0 t=T

‘Model uncertainty’

Forecast lead time —>

In
iti

al
 c

on
di

tio
ns

 —
>

On forecast uncertainty

How good are the models?



Experiment -> Initialize SIO models with same ICs 

We build a control run, that uses climatological (2007-2014) 
PIOMAS May 1 sea ice thickness, and an experiment run, that 

uses 2015 May 1 sea ice thickness.

Model Model type Ensemble size

UCL (Barthelemy et al) Global ice-ocean model forced with past 
atmosphere reanalysis

7

NRL (Posey et al) 10

PIOMAS (Zhang & Lindsay) Regional ice-ocean model forced with past 
atmosphere reanalysis 10

NCAR CCSM4 (BW et al)

Global seasonal forecasting systems/fully 
coupled models

9
NASA GMAO (Cullather et al) 10

NOAA CFSv2 (Wang et al) 16
CNRM (Chevallier et al) 15
Ec-EARTH (Fuckar et al) 20

Blanchard-W et al, 2016



Control: mean May 1 2007-2014 sea ice thickness in Arctic basin

Experiment: May 1 2015 sea ice thickness in Arctic basin

May 1 ice edge



May 1 ice edge
Sep ice edge

Control: mean May 1 2007-2014 sea ice thickness in Arctic basin

Experiment: May 1 2015 sea ice thickness in Arctic basin



No change in sea 
ice area between 

experiment & 
control ICs

May 1 ice edge
Sep ice edge

Control: mean May 1 2007-2014 sea ice thickness in Arctic basin

Experiment: May 1 2015 sea ice thickness in Arctic basin



No change in sea 
ice area between 

experiment & 
control ICs

May 1 ice edge
Sep ice edge

Spring thickness 
—> summer sea 

ice area

Control: mean May 1 2007-2014 sea ice thickness in Arctic basin

Experiment: May 1 2015 sea ice thickness in Arctic basin
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2015 area2015 area

2015-climo area2015-climo area

Same ICs, different (uncalibrated) forecasts!

σ(ensemble means)

mean(σ(ensemble))
σ(anom ens means)

September standard dev. in obs ~5e11



Are the models too predictable?

Forecast lead time —> Tietsche et al, 2014; 
Day et al 2015

Perfect model SIA predictability
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Is there a link between variability (which we can 
measure in real world) and predictability?
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March SIA anomalies from 2000s control



September SIA anomalies from 2000s control
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APPOSITE: Samples CMIP5 Y2Y 
GCMs: no link between Y2Y March/Sep

Are models too persistent (‘sluggish’), and therefore 
too predictable?

Models more persistent than observations



Summary

Initial value perfect model experiments show sea ice area is predictable 
for at least 1 year, hindcasts and forecasts mostly show skill for a season 
or two.
Why the gap? Errors/uncertainty in initial conditions, model physics 
and forecast bias correction likely all play significant role.
Are models too ‘predictable’, too little high frequency variability? (possibly) 
Are observations/ICs good enough? (hmmm)

Predictability comes in two flavors: initial value (weather forecast) and 
forced (climate forecast) predictability. 



Summary

Initial value perfect model experiments show sea ice area is predictable 
for at least 1 year, hindcasts and forecasts mostly show skill for a season 
or two.
Why the gap? Errors/uncertainty in initial conditions, model physics 
and forecast bias correction likely all play significant role.
Are models too ‘predictable’, too little high frequency variability? (possibly) 
Are observations/ICs good enough? (hmmm)

Predictability comes in two flavors: initial value (weather forecast) and 
forced (climate forecast) predictability. 

Decadal predictability: initial value for winter in North Atlantic 
Observations too short to see low frequency variability/predictability?
Changes in predictability with changing mean state??

Other things to think about…

Beyond extent/thickness: Regional predictability? Other climate components?



Extra slides



Extent is not very practical for most (all?) stakeholders: instead 
regional metrics such as sea ice probability, ice edge location, ice 
melt dates, ice freeze-up dates are key.

September Sea ice probability 
forecast 2016 from August’16

Beyond sea ice extent



Decadal predictability 
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initial value predictability, e.g., BW et al 2011, Tietsche et al 2014)
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Recent studies have shown initial value decadal predictability, notably 
Yeager et al 2015 (for winter North Atlantic sea ice in observations) 
and Germe et al 2014 (mainly winter, also North Atlantic in perfect-
model framework). Also in Antarctica (Zunz et al, 2015)



Decadal predictability 

Perfect-model studies suggested decadal predictability was forced (no 
initial value predictability, e.g., BW et al 2011, Tietsche et al 2014)

Recent studies have shown initial value decadal predictability, notably 
Yeager et al 2015 (for winter North Atlantic sea ice in observations) 
and Germe et al 2014 (mainly winter, also North Atlantic in perfect-
model framework). Also in Antarctica (Zunz et al, 2015)

Yeager et al, 2015



Decadal predictability 

Mahlstein and Knutti, 2012



Decadal predictability 

What about sea-ice free summers?

Mahlstein and Knutti, 2012



Decadal predictability 

What about sea-ice free summers?

Mahlstein and Knutti, 2012
How much of observed trend is forced v natural? 
Could intrinsic sensitivity to warming be 
significantly higher in observations?


