Isolating Feedbacks between Sea Ice and Synoptic Storms in the Arctic

Yiyi Huang, Hansi Singh and Liran Peng

2018 CESM Polar Modeling Workshop Aug 17, 2018

Science Objectives

• Arctic sea ice has experienced dramatic changes in recent decades.

• Changes in the strength and severity of local synoptic storms may be linked to these changes in sea ice.

• Understanding potential feedback mechanisms between sea ice and storms is essential for improved prediction of Arctic climate change.

A Feedback Mechanism?

Arctic Storms

Arctic Storms Impact Sea Ice

Sea Ice Impacts Arctic Storms

Arctic Sea Ice

A 'Sneaker-Net' Approach

Experiment I

Arctic Storms Impact Sea Ice

Arctic Sea Ice

Experiment II

Arctic Storms

Arctic Storms

Sea Ice Impacts Arctic Storms

Arctic Sea Ice

• Experiment I: the sea ice response to synoptic storms

Cluster 10-yr chunks from the CESM-LE control:

- > 10 chunks with high storm frequency
- > 10 chunks with low storm frequency

Run 10-yr standalone sea ice active simulations (D compset) using prescribed atmospheric conditions from high-storm years (10 ensemble members) and low-storm years (10 ensemble members)

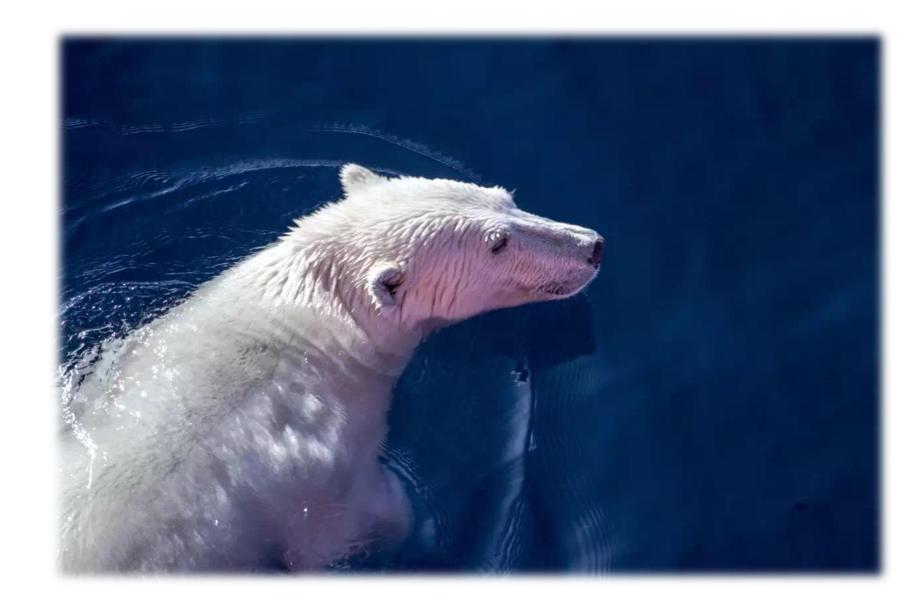
• Experiment I: the sea ice response to synoptic storms

• Experiment II: the synoptic storm response to sea ice changes

Cluster 2-yr chunks from the CESM-LE control:

- > 10 chunks with high annual sea ice extent
- > 10 chunks with low annual sea ice extent

➢Run 50-yr active atmosphere simulations (F compset) with prescribed high sea ice (10 ensemble members) and low sea ice (10 ensemble members); extra-Arctic SSTs are identical for all simulations


• Experiment II: the response of synoptic storms to variations in sea ice extent

Tables for model runs

Experiment	Configuration	Resolution	Number of runs	Number of years per run	Cheyenne core-hours per simulated year	Total in thousands of Cheyenne core hours	Total data volume (Tb)	Details
D	2000_DATM%NY F_SLND_CICE_D OCN%SOM_DRO F%NYF_SGLC_S WAV Components: datm,slnd,cice,d ocn,sglc	f09_g16	20	10	400	80	~3 (monthly, daily output)	Daily: ~43M/day Monthly: ~78M/day
FAMIPC5	Components: cam,clm,cice,doc n,sglc	f09_f09	20	50	898	900	~22 (monthly, daily and 6-hourly; PW of 30N)	6-hourly: ~836M*49=4096 4M/yr Daily: ~2.12G/mon Monthly: ~2.78G/year

Thank you! Questions?

