Introduction

Clouds impact Arctic surfaces

- Studies illustrate that for much of the year clouds have a net warming effect on the surface¹
- Low optical depth clouds have been shown to enhance melting at the surface²
- Changes in Arctic cloud properties with increasing greenhouse gases may influence radiative fluxes at the surface and affect the relative importance of albedo feedbacks³

Goal: Use CESM to assess how modification of cloud optical depth (COD) impact Arctic surfaces, specifically:

- Examine downwelling radiation changes as a function of COD of Arctic clouds
- How different CODs impact the sea ice extent and thickness, and surface temperatures in the Arctic
- How different CODs impact the same features plus surface albedo feedback in a doubled-CO2 climate scenario

1 Curry et al., 2000; Intrieri et al., 2002; Shupe and Intrieri, 2003

2 Bennartz et al., 2013; Van Tricht et al., 2016

3; Kay et al, 2008; Pithan and Mauritsen, 2014

Experiment Outline – 1

1: Sensitivity Study

- Use CESM with active atmosphere and land models (F1850) and prescribed sea ice and SSTs to assess the downwelling radiation
- In addition to a control run, we examine the radiative impact of changing the cloud optical depth in the model for the Arctic region (60° – 90°N) only:
 - Fractions: 50%, 75%, 150%, 200%, and 500% COD
- Compare the results to the control and assess if more sensitivity studies are warranted
- Use the COD fractions with the highest potential increase in downwelling radiation when compared to control in Part 2

Experiment Outline – 2

2a: COD and Sea Ice Study

- Use CESM with active atmosphere, land, and sea ice components and slab ocean (E1850) to assess radiative impact of COD on sea ice extent, thickness, and surface temperature
 - In the absence of ocean dynamics
 - Using slab ocean for assessment of surface temperatures and sea ice extent (Kay et al., 2012)

2b: Double CO2, COD, and Sea Ice Study

- Use CESM with active atmosphere, land, and sea ice components and slab ocean (E1850) and abrupt doubling of CO₂ to assess radiative impact of COD on sea ice extent, thickness, surface temperature, and surface albedo feedback
 - Assess the impact of the COD changes under a climate change scenario forced by increases in greenhouse gas emissions

Experiment Outline

Experiment	Model Components	Number of Years
Sensitivity Study: Radiative impact due to changes in COD in Arctic clouds (.5, .75, 1.5, 2, and 5 times)	Active CAM6; CLM5 Prescribed CICE; OCN F1850	35 (throw out years <5)
Sea Ice Study: Based on sensitivity study, change the COD of Arctic clouds	Active CAM6; CLM5 CICE; SOM E1850	250 (throw out years <50)
Sea Ice+2XCO₂ Study: Based on sensitivity study, change the COD of Arctic clouds, and abrupt doubling of CO ₂	Active CAM6; CLM5 CICE; SOM E1850 co2vmr = doubled	250 (throw out years <50)

Timing/Cost Table/Output

Configuration	Resolution	Number of Runs	Number of years per run	Cheyenne core hours per simulated year	Total core hours (in thousands)	Total data volume
F1850	f09_g17	10	35	400	140	550GB
E1850	f09_g17	8	250	1700	3400	2.2TB

Monthly means 1850 runs:

- Sea ice extent/thickness
- Surface temperature
- Surface/TOA radiative fluxes
- Cloud variables
- Temperature Profile
- Specific Humidity Profile
- Surface air temperature

Analyses:

- Relationship between radiative fluxes and COD
- Impacts of COD on sea ice properties
- Response to GHG forcing, including surface albedo feedback (radiative kernel)