Blocking and Greenland's Climate

Figure 1: A schematic depicting a Greenland Block. The high pressure system remains stationary for days and diverts the jet streak northward while bringing warm air onto the GrIS (source: https://wattsupwiththat.wordpress.com/2016/04/27/weather-pattern-changes-overgreenland-may-account-for-melting-storms-in-europe/)

Case: July 11, 2012

Many processes can affect snowmelt on the Greenland Ice Sheet (GrIS): clouds, impurities in the snow, and snow metamorphism, to name a few. Another phenomenon affecting Greenland's climate is atmospheric blocking.

Atmospheric blocks are largescale high pressure systems that deflect westerly winds, promote sunny conditions, and persist for days/weeks at a time (figure 1). Greenland-based blocks also move warm, subtropical Atlantic air over the ice sheet. These processes affect local surface energy balance and snowmelt processes.

500mb GPH

mm/wk 5670 -54 -36 -18 36 54 5490 5580 18 5400 0

Figure 2: MERRA-2 Reanalysis 500mb geopotential height (left) and offline CLM snowmelt anomalies (right) for July 11, 2012. The geopotential height pattern depicts a Greenland Block over the region.

How do these processes work? It differs for individual blocks. Why are each of these blocks different? Let's find out.

Jamie L. Ward PhD Candidate,

University of Michigan

