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What is Data Assimilation?

Borrowed from Anderson et al., 2013

Reconstruct states of climate in the past
Provide more accurate initial conditions for 
prediction
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Chevallier et al (2016)

Annual volume of sea ice

Uncertainty in sea ice reanalysis/reconstruction products (from which initial 
conditions are taken)
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Mean March 2003-2007 Sea Ice Thickness (m) in 
global ocean-sea ice reanalyses with assimilation of sea 
ice concentration Chevallier et al (2016)

Errors in sea ice reanalysis/reconstruction (from which initial 
conditions are taken)
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Basic theory of the ensemble 
Kalman filter (EnKF)

Check out the DART tutorial
https://www.image.ucar.edu/DAReS/DART/Man
hattan/documentation/tutorial/
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https://www.image.ucar.edu/DAReS/DART/Manhattan/documentation/tutorial/


A one-
dimension 
example
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A one-
dimension 
example
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The EnKF
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as the Kalman filter (Kalman, 1960; Kalman and Bucy, 1961; Jazwinski, 1970 section
7.3; Gelb, 1974 section 4.2; Maybeck, 1979 section 5.3; Ghil, 1989; Daley, 1991
section 13.3; Cohn, 1997; Talagrand, 1997; Daley, 1997). We review the Kalman
filter first. The Kalman filter is an approximation to Bayesian state estimation which
assumes linearity of error growth and normality of error distributions. There are two
components of the Kalman filter, an update step where the state estimate and an
estimate of the forecast uncertainty are adjusted to new observations, and a forecast
step, where the updated state and the uncertainty estimate are propagated forward to
the time when the next set of observations becomes available.

6.3.1 The extended Kalman filter
We now consider an implementation of the Kalman filter called the extended Kalman
filter, or ‘EKF’ (Jazwinski, 1970; Gelb, 1974; Ghil and Malanotte-Rizzoli, 1991; Gau-
thier et al., 1993; Bouttier, 1994). The EKF assumes that background and observation
error distributions are Gaussian: xb

t = xt
t + e, where e ∼ N (0, Pb

t ). That is, the prob-
ability density of the prior is distributed as a multivariate normal distribution with
known n×1 mean background xb

t and n×n background-error covariance matrix Pb
t .

Similarly, y= H(xt
t) + ε, where ε ∼ N (0, R) andH is the Mt ×n ‘forward’ operator

that maps the state to the observations. Let H represent the m×n Jacobian matrix
of H: H = ∂H

∂x (see Gelb, 1974, section 6.1). Also, let M represent the non-linear
model forecast operator. M is the n×n Jacobian matrix of M, M = ∂M

∂x . M is often
called the transition matrix between times t and t + 1. MT is its adjoint (see Le Dimet
and Talagrand, 1986, and Lacarra and Talagrand, 1988). Q will represent the n×n
covariance of model errors accumulated between update cycles.

The EKF equations are

xa
t = xb

t + K
(
yt − H

(
xb

t

))
(6.6a)

K = Pb
t HT(

HPb
t HT + R

)−1
(6.6b)

Pa
t = (I − KH)Pb

t (6.6c)

xb
t+1 = M

(
xa

t

)
(6.6d)

Pb
t+1 = MPa

t MT + Q = M
(
MPa

t

) T + Q. (6.6e)

Equations (6.6a–6.6c) describe the update step. The optimal analysis state xa
t

is estimated by correcting the background xb
t toward the ‘observation increment’

yt − H(xb
t ), weighted by the Kalman-gain matrix K. The effect of K is to apply

observation increments to correct the background at relevant surrounding grid points.
Equation (6.6c) indicates how to update the background-error covariance to reflect
the reduction in uncertainty from assimilating the observations. Equations (6.6d–
6.6e) propagate the resulting analysis and error covariance forward in time to when
observations are next available. The expected analysis state is propagated forward
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Some reductions of computational expense may be possible. For example, there have
been suggestions that this computation may be more practical if the tangent linear
calculations are performed in a subspace of the leading singular vectors (Fisher, 1998;
Farrell and Ioannou, 2001).

Much more can be said about the Kalman filter, such as its equivalence to
4D-Var under certain assumptions (Li and Navon, 2001), the manner of comput-
ing M, iterated extensions of the basic extended Kalman filter (Jazwinski, 1970;
Gelb, 1974; Cohn, 1997), and the properties of its estimators (which, in the case of
the discrete filter, if assumptions hold, provide the Best Linear Unbiased Estimate,
or BLUE; see Talagrand, 1997).

6.4 Ensemble-based data assimilation

Ensemble-based assimilation algorithms use Monte Carlo techniques and may be able
to provide more accurate analyses than the EKF in situations where non-linearity is
pronounced and pdfs exhibit some non-normality. If these assimilation algorithms
can work accurately with many fewer ensemble members than elements in the state
vector, then they will be computationally much less expensive as well.

Many researchers have proposed a variety of ensemble-based assimilation meth-
ods. Despite the many differences between the various ensemble-based algorithms,
all comprise a finite number (perhaps ten to a few hundred) of parallel data assim-
ilation and short-range forecast cycles. Background-error covariances are modelled
using the ensemble of forecasts, and an ensemble of analyses are produced, followed
by an ensemble of short-term forecasts to the next time observations are available.
Ensemble-based assimilation algorithms also have the desirable property that if error
dynamics are indeed linear and the error statistics Gaussian, then as the ensemble
size increases, the state and covariance estimate from ensemble algorithms converge
to those obtained from the extended Kalman filter (Burgers et al., 1998).

The concepts behind ensemble assimilation methods have been used in engineer-
ing and aerospace applications as far back as the 1960s (Potter, 1964; Andrews,
1968; Kaminski et al., 1971; Maybeck, 1979, ch. 7). Leith (1983) sketched the basic
idea for atmospheric data assimilation. The idea was more completely described and
tested in an oceanographic application by Evensen (1994) and in atmospheric data
assimilation by Houtekamer and Mitchell (1998).

For notational simplicity, the t time subscript used in previous sections is dropped;
it is assumed unless noted otherwise that we are interested in estimating the state
pdf at time t. We start off by assuming that we have an ensemble of forecasts that
randomly sample the model background errors at time t. Let’s denote this ensemble
as Xb, a matrix whose columns comprise ensemble members’ state vectors:

Xb =
(
xb

1, . . . , xb
m

)
, (6.7)
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Figure 6.2 Background-error covariances (grey shading) of sea-level pressure in
the vicinity of five selected observation locations, denoted by dots. Covariance
magnitudes are normalised by the largest covariance magnitude on the plot. Solid
lines denote ensemble mean background sea-level pressure contoured every 8 hPa.

The subscript now denotes the ensemble member. The ensemble mean xb is defined
as

xb = 1
m

m∑

i=1

xb
i . (6.8)

The perturbation from the mean for the ith member is x′b
i = xb

i − xb. Define X′b

as a matrix formed from an ensemble of perturbations

X′b =
(
x′b

1 , . . . , x′b
m

)
(6.9)

and let P̂b represent an estimate of Pb from a finite ensemble

P̂b = 1
m − 1

X′bX′bT
. (6.10)

Unlike the Kalman filter or 3D-Var, the background-error covariance estimate is
generated from a specially constructed ensemble of non-linear forecasts. The finite
sample will introduce errors (see, for example, Casella and Berger, 1990, section
5.4, and Hamill et al., 2001, section 2) relative to the EKF. However, estimating the
covariances using an ensemble of non-linear model forecasts may provide a powerful
advantage over the EKF. Envision a situation where errors grow rapidly but saturate
at low amplitude; the linear assumption of error growth in the EKF will result in
an overestimate of background error variance, but the differences among ensemble
members will not grow without bound and thus should provide a more accurate model
of the actual background-error statistics. Unlike data assimilation algorithms such
as 3D-Var (in most operational implementations), the background-error covariances
can vary in time and space. If this error covariance model is relatively accurate, it
will thus provide a better adjustment to the observations.

Figure 6.2 illustrates the potential benefit from estimating background-error
covariances using an ensemble-based data assimilation system. Here we see a

Approximate the pdf by a finite sample
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• In KF, error grows linearly
• It requires tremendous 

computational cost to forecast
the background error covariance

• Background error covariances are modeled using 
the ensemble of non-linear forecasts

• Reduces computational cost
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DART Tutorial Section 1
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DART Tutorial Section 1
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DART Tutorial Section 1
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p 	is	prior,	
u 	is	update	(posterior),	

	is	standard	devia'on,	
overbar	is	ensemble	mean. 		

Ensemble	Adjustment	(Kalman)	Filter	
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Posterior PDF

Mean Shifted
Variance Adjusted

 xi
u = xi

p − x p( ) i σ u /σ p( ) + x u
σi	=	1,...,	ensemble	size.		

Sampling	Posterior	PDF	

DART	Tutorial	Sec'on	1:	Slide	29	DART Tutorial Section 1
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Data assimilation: to combine physical model simulations with 
observations 

Model

OBS

Prior

Posterior

Initial 
Conditions

Forcing Prior: represents our best knowledge of the system, 
a.k.a first guess, background or forecast.

Posterior: the state vector that combines model’s 
forecast and the observation, a.k.a analysis.

Forecast

Update Stop
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The Sea Ice Model
• The Los Alamos sea ice model version 5 (CICE5)

– Contains a thermodynamic model and a dynamic model
– Multiple ice thickness categories

text

SIC, SIT

ice

DEPTH

po
nd

open water

snow

FSW

αFSW

Flat + Fsens

FLW,net

Tbot

Tsurf

Sea ice concentration (SIC)
Sea ice thickness (SIT)

Prior
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Observations

Sea Ice Concentration (SIC) 

Time

SIC1  

S IC2

SIC3     

SIC4

SIC5

SIC

• In-situ observations are usually point-wise

• A satellite gives an “aggregate” estimate for 
all ice types at its resolution
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Freeboard 

Sea ice thickness (SIT) can be retrieved from freeboard given snow/ice thicknesses 
and densities. 

16
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Flowchart of the Ensemble Kalman Filter

The model advances to the time step at which the observation is 
available

http://www.image.ucar.edu/DAReS/DART/
17



Get prior ensemble sample of observation y=h(x), by applying forward 
operator h to each ensemble member

http://www.image.ucar.edu/DAReS/DART/

Flowchart of the Ensemble Kalman Filter
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Observation operator

SIC1  

S IC2

SIC3     

SIC4

SIC5

SIC
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Observation operator
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Get observed value and observational error distribution from the 
observation system

http://www.image.ucar.edu/DAReS/DART/

Flowchart of the Ensemble Kalman Filter
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Get the posterior PDF, draw a sample from the posterior PDF, and find 
increment for each prior observation ensemble

http://www.image.ucar.edu/DAReS/DART/

Flowchart of the Ensemble Kalman Filter
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Use ensemble samples of y and each state variable to linearly regress 
observation increments onto state variable increments

http://www.image.ucar.edu/DAReS/DART/

Flowchart of the Ensemble Kalman Filter
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Incrementing on unobserved variables

SIC1

S IC2

SIC3

SIC4

SIC5

SIC

SICi is an “unobserved” variable
SIC is the “observed” variable
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Fb is the observed variable
Hi and Hsn are unobserved variables

25



Model proceeds to the next time step with the new initial conditions

http://www.image.ucar.edu/DAReS/DART/

Flowchart of the Ensemble Kalman Filter
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Some	Error	Sources	in	Ensemble	Filters	

*
*
*
*

1.	Model	Error	

2.	h	errors;	
Representa'veness	

3.	‘Gross’	Obs.	Error	 4.	Sampling	Error;	
Gaussian	Assump'on	

5.	Sampling	Error;	
Assuming	Linear	
Sta's'cal	Rela'on	

tk	

tk+1	

tk+2	
h h h

DART	Tutorial	Sec'on	9:	Slide	2	
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Dealing	with	Ensemble	Filter	Errors	
Fix	1,	2,	3	independently,	
HARD	but	ongoing.	
	
O\en,	ensemble	filters...	
	
1-4:	Variance	infla'on,	
Increase	prior	uncertainty	
to	give	obs	more	impact.	
	
5.	‘Localiza'on’:	only	let	
obs.	impact	a	set	of	
‘nearby’	state	variables.	
	
O\en	smoothly	decrease	
impact	to	0	as	func'on	of	
distance.	

*
*
*
*

1. Model Error 

2. h errors; 
Representativeness 

3. ‘Gross’ Obs. Error 4. Sampling Error; 
Gaussian 
Assumption 

5. Sampling Error; 
Assuming Linear 
Statistical Relation 

tk 

tk+1 

tk+2 

h h h

DART	Tutorial	Sec'on	9:	Slide	3	
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Model/Filter	Error:	Filter	Divergence	and	Variance	Infla'on	

−4 −3 −2 −1 00

0.5

1

Pr
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y

"TRUE" Prior PDF

Variance Deficient PDF

1.	History	of	observa'ons	and	physical	system	=>	‘true’	distribu'on.	
2.	Sampling	error,	some	model	errors	lead	to	insufficient	prior	variance.	
3.	Can	lead	to	‘filter	divergence’:	prior	is	too	confident,	obs.	Ignored.	
	

Naïve	solu'on	is	variance	infla'on:	just	increase	spread	of	prior.	
For	ensemble	member	i,		 inflate xi( ) = λ xi − x( )+ x

DART	Tutorial	Sec'on	9:	Slide	6	
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Model/Filter	Error:	Filter	Divergence	and	Variance	Infla'on	
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"TRUE" Prior PDF Error in Mean (from model)

Variance Inflated

Infla'ng	can	ameliorate	this.	
Obviously,	if	we	knew	E(error),	we’d	correct	for	it	directly.	

1.	History	of	observa'ons	and	physical	system	=>	‘true’	distribu'on.	
2.	Most	model	errors	also	lead	to	erroneous	shi\	in	en're	distribu'on.	
3.	Again,	prior	can	be	viewed	as	being	TOO	CERTAIN.	

DART	Tutorial	Sec'on	9:	Slide	9	
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Dealing	with	Regression	Sampling	Error	

3.	Use	addi'onal	a	priori	informa'on	about	rela'on	between	
observa'ons	and	state	variables.		

	

Can	use	other	func'ons	to	weight	regression.	
Unclear	what	distance	means	for	some	obs./state	variable	pairs.	
Referred	to	as	LOCALIZATION.	

Halfwidth	

DART	Tutorial	Sec'on	8:	Slide	16	31



DART	provides	several	localiza'on	op'ons	

1.	Different	shapes	for	the	localiza'on	func'on	are	available.	
Controlled	by	select_localiza-on	in	&cov_cutoff_nml.	

	

2.	Halfwidth	of	localiza'on	func'on	set	by	cutoff	in	&assim_tools_nml

1=>	Gaspari-Cohn	

2=>	Boxcar	

3=>	Ramped	Boxcar	

DART	Tutorial	Sec'on	8:	Slide	17	
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Localization
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The Data Assimilation System
Of CESM/DART

DARTAtmos

Land

Sea Ice

Ocean

CESMDART

DART

DART

CAM

CLM

CICE

POP

Obser-
vations

Data
Assimilation

Computer Forecasts
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The Coupled DART and CICE

35

DART 
State 

Variables

Observations

CICE
Ensemble 
Members

Initial 
Conditions

Forcings

Lon
Location of the observation 

Lat

The model gridcell
Restart   

Files

Executables: filter, dart_to_cice



Things to do
• Log on Cheyenne
• Copy the folder of day4 into your account, read the 

guidelines
• Download the DART code
• Check out the cesm2_0_ensemble_setup jobscript
– Ensemble atmospheric forcing
– Ensemble sets of parameters
– Ensemble initial conditions

• Check out the observation sequence files
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• Compset: DTEST
– 2000_DATM%NYF_SLND_CICE_DOCN%SOM_DROF%NYF_S

GLC_SWAV_TEST

– Data atmosphere, slab ocean, active sea ice

• The ensemble-capability of CESM

– One executable, multiple instances

coupler

ATM1 ATM3

ATM2

ICE1 ICE3
ICE2

OCN1

OCN3

OCN2

LND3

LND1

LND2

Let’s run 10 ensemble members 37



Specify the namelist files

• user_nl_datm_0001
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• user_nl_cice_0001
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The free run with 10 ensemble members 

40

• We chose one ensemble member as the “truth” 
• and add some noise to make “synthetic observations”: 0.4m random error is 

added to sea ice thickness (SIT)



observation sequence files
• DART has its own format for observations
– obs_seq.YYYY-MM-DD-SSSSS
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Choose your favorite observation spot

~yfzhang/PWS2018/day4/obs_seqs/$observation_spot/
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