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What is Data Assimilation?

Observations combined with a Model forecast...

© Reconstruct states of climate in the past
©® Provide more accurate initial conditions for
prediction

A
...to produce an analysis |
(best possible estimate).

Borrowed from Anderson et al., 2013



Uncertainty in sea ice reanalysis/reconstruction products (from which initial

conditions are taken)
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Errors in sea ice reanalysis/reconstruction (from which initial
conditions are taken)
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Mean March 2003-2007 Sea Ice Thickness (m) in
global ocean-sea ice reanalyses with assimilation of sea

ice concentration Chevallier et al (2016)



Basic theory of the ensemble
Kalman filter (EnKF)

Check out the DART tutorial

https://www.image.ucar.edu/DAReS/DART/Man
hattan/doecumentation/tutorial/



https://www.image.ucar.edu/DAReS/DART/Manhattan/documentation/tutorial/

Bayes’ Rule
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A : Prior Estimate based on all previous information, C.
B : An additional observation.

p(AIBC) :Posterior (updated estimate) based on C and B.
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Product of Two Gaussians
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The EnKF

X = X]t3 g K(yt s H(X]tj)) * In KF, error grows linearly
* It requires tremendous

t
computational cost to forecast

K = PPH"(HP’H" +R)
the background error covariance
P? = (I - KH)P

Approximate the pdf by a finite sample

Xb:(th),,X,I,D”) . -
b * Background error covariances are modeled using
) i 2 :Xb the ensemble of non-linear forecasts
m— g e Reduces computational cost
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Ensemble filters: Prior is available as finite sample.
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Fit a continuous (Gaussian for now) distribution to sample.
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Product of prior Gaussian fit and Obs. likelihood is Gaussian.
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Computing continuous posterior is simple.
BUT, need to have a SAMPLE of this PDF.
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Ensemble Adjustment (Kalman) Filter
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p s prior,
x! = (xl!’ _fp).(g” /cyp)-|—)_c” u is update (posterior),
O is standard deviation,

overbar is ensemble mean.
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Data assimilation: to combine physical model simulations with

Forcing

|

Model

observations

Prior: represents our best knowledge of the system,
a.k.a first guess, background or forecast.

Posterior: the state vector that combines model’s
forecast and the observation, a.k.a analysis.

Forecast

Initial
Conditions
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rr The Sea Ice Model

 The Los Alamos sea ice model version 5 (CICE5)
— Contains a thermodynamic model and a dynamic model
— Multiple ice thickness categories

i Esw Sea ice concentration (SIC)
b e Sea ice thickness (SIT)
Fiat T Fsens N
SIC = ZSICl-
: i=1
" >N, SIC; - SIT,
DEPTH| snow SIT = i=1 i i
' N
N\ NS i=1 SICl
SIC;, SIT| * .




* In-situ observations are usually point-wise

e A satellite gives an “aggregate” estimate for
all ice types at its resolution
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Freeboard

air

Freeboard (ice / snow)

3

sea ice

thickness

draft

sea waler

sea waler

Credit:Ron Kwok, NASA/JPL

Sea ice thickness (SIT) can be retrieved from freeboard given snow/ice thicknesses

and densities.
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Flowchart of the Ensemble Kalman Filter

tk >
ii/ — {k+1
¥ <

The model advances to the time step at which the observation is
available

http://www.image.ucar.edu/DAReS/DART/



Flowchart of the Ensemble Kalman Filter
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Get prior ensemble sample of observation y=h(x), by applying forward
operator h to each ensemble member

http://www.image.ucar.edu/DAReS/DART/



Observation operator
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Observation operator
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Flowchart of the Ensemble Kalman Filter
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Get observed value and observational error distribution from the
observation system

http://www.image.ucar.edu/DAReS/DART/



Flowchart of the Ensemble Kalman Filter
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Get the posterior PDF, draw a sample from the posterior PDF, and find
increment for each prior observation ensemble

http://www.image.ucar.edu/DAReS/DART/



Flowchart of the Ensemble Kalman Filter
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Use ensemble samples of y and each state variable to linearly regress
observation increments onto state variable increments

http://www.image.ucar.edu/DAReS/DART/



Incrementing on unobserved variables

SIC is the “observed” variable

N
SIC = Z SIC; SIC; is an “unobserved” variable
=1

SICs
SIC,
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Fb is the observed variable
Hi and Hsn are unobserved variables

Fb = H, - (1 —&)—@'Hsn
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seacigtace
sea ice
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Flowchart of the Ensemble Kalman Filter

Model proceeds to the next time step with the new initial conditions

http://www.image.ucar.edu/DAReS/DART/
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Some Error Sources in Ensemble Filters

2. h errors; 3. ‘Gross’ Obs. Error 4. Sampling Error;

’ ’—-_--

Representativeness e . Gaussian Assumption

4
5. Sampling Error;
Assuming Linear
Statistical Relation

27
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Dealing with Ensemble Filter Errors

Fix 1, 2, 3 independently,
HARD but ongoing.

2. h errors; 3. ‘Gross’ Obs. Error 4. Sampling Error;

Representativeness R e Gaussian
’ .
Assumption

Often, ensemble filters...

1-4: Variance inflation,
Increase prior uncertainty
to give obs more impact.

. / . ]
1. Model Error 5. Sampling Error; 5. ‘Localization’: onIy let

Assuming Linear

Statistical Relation obs. impact a set of
‘nearby’ state variables.

Often smoothly decrease
impact to 0 as function of
distance.

28
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Model/Filter Error: Filter Divergence and Variance Inflation

1. History of observations and physical system => ‘true’ distribution.
2. Sampling error, some model errors lead to insufficient prior variance.
3. Can lead to ‘filter divergence’: prior is too confident, obs. Ignored.

Variance Deficient PDF ™
> b S— T S — S — :
3 "TRUE" Prior PDF, %
0 : ' ; .
S z '
g OB R R G '

24 =3

Naive solution is variance inflation: just increase spread of prior.
For ensemble member i, inflate(x,)=vA(x,-%)+%X

29
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Model/Filter Error: Filter Divergence and Variance Inflation

1. History of observations and physical system => ‘true’ distribution.
2. Most model errors also lead to erroneous shift in entire distribution.

3. Again, prior can be viewed as being TOO CERTAIN.

0.8—rUE" Prior PDF Error in Mean (from model)

e
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Probability
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N

Inflating can ameliorate this.
Obviously, if we knew E(error), we’d correct for it directly.
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Dealing with Regression Sampling Error

3. Use additional a priori information about relation between
observations and state variables.

y
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SN\
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Regression Weight
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Can use other functions to weight regression.
Unclear what distance means for some obs./state variable pairs.

Referred to as LOCALIZATION.

DART Tutorial Section 8:3$]ﬁde 16



DART provides several localization options

1. Different shapes for the localization function are available.
Controlled by select_localization in &cov_cutoff nml.

1 L

. 50l

1=> Gaspari-Cohn 27
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2=> Boxcar 2
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Distance from Observation

3=> Ramped Boxcar

Weight
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2. Halfwidth of localization function set by cutoff in sassim tools nml

3
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The Data Assimilation System
Of CESM/DART

Obser- Data Computer Forecasts
vations Assimilation

land —> DART<—> CIM  CESM

Ocean —> DART<—> POP



The Coupled DART and CICE

Initial >
Conditions -

CICE
Ensemble
Members

Executables: filter, dart_to_ cice

DART
State
Variables

Lat

Lon

* Location of the observatior
O The model gridcell
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Things to do

Log on Cheyenne

Copy the folder of day4 into your account, read the
guidelines

Download the DART code
Check out the cesm2_0 ensemble_setup jobscript
— Ensemble atmospheric forcing

— Ensemble sets of parameters
— Ensemble initial conditions

Check out the observation sequence files



* Compset: DTEST

— 2000 _DATM%NYF_SLND_CICE_DOCN%SOM_DROF%NYF_S
GLC_SWAV_TEST

— Data atmosphere, slab ocean, active sea ice

* The ensemble-capability of CESM

— One executable, multiple instances

ATM1 ATM3
ATM2

LND1 OCN3

LND2 " coup'ar OCN2

g / i OCN1

ICE2
ICE1 ICE3

Let’s run 10 ensemble members



Specify the namelist files

e user_nl datm 0001

38



e user_nl _cice 0001

39



x10° km?
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— FREE Ensemble-mean
— Truth

Arctic sea ice area
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Arctic sea ice volume

22 .

We chose one ensemble member as the “truth”

and add some noise to make “synthetic observations”

added to sea ice thickness (SIT)

The free run with 10 ensemble members

: 0.4m random error is



observation sequence files

e DART has its own format for observations
— obs_seq.YYYY-MM-DD-SSSSS




Choose your favorite observation spot

180
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~yfzhang/PWS2018/day4/obs_seqs/Sobservation_spot/
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