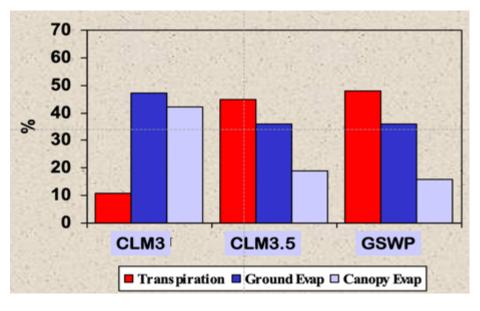


The Community Land Model, version 5

Building a community to build a community model

David Lawrence and many, many others

dlawren@ucar.edu https://github.com/ESCOMP/ctsm


CCSM Distinguished Achievement Award to the Land Model Working Group

"for their cooperative work in producing CLM3.5 which is a considerable improvement over CLM3"

CLM3.5

- Updated surface data sets
- New parameterizations for canopy integration, canopy interception
- Frozen soil
- Soil evaporation
- TOPMODEL-based surface and subsurface runoff
- Simple groundwater model

Partitioning of Evapotranspiration

CLM3.5 (May 2007)

- Updated surface data sets
- New parameterizations for canopy integration, canopy interception
- Frozen soil
- Soil evaporation
- TOPMODEL-based surface and subsurface runoff
- Simple groundwater model

CLM3.5 CLM4 (June 2010)

J. Adv. Model. Earth Syst., Vol. 3, Art. 2011MS000045, 27 pp.

Parameterization Improvements and Functional and Structural Advances in Version 4 of the Community Land Model

David M. Lawrence¹, Keith W. Oleson¹, Mark G. Flanner², Peter E. Thornton³, Sean C. Swenson¹, Peter J. Lawrence¹, Xubin Zeng⁴, Zong-Liang Yang⁵, Samuel Levis¹, Koichi Sakaguchi⁴, Gordon B. Bonan¹, Andrew G. Slater⁶

- Updated surf
- New paramerintegration, ca
- Frozen soil
- Soil evaporat
- TOPMODELsubsurface ru
- Simple groun

- rf Carbon and nitrogen model
 - Prognostic vegetation state / phenology
 - Transient land cover change
 - Wood harvest
 - 'Permafrost-enabled' organic soil, deep ground
 - Aerosol deposition onto snow
 - Urban model

CLM4 widely used

- > 1000 citations for paper
- > 1300 citations for Tech Note

CLM3.5 CLM4 CLM4.5 (June 2013)

- Updated surf
- New paramerintegration, ca
- Frozen soil
- Soil evaporat
- TOPMODELsubsurface ru
- Simple groun

- Carbon and nitroger
- Prognostic vegetatic phenology
- Transient land cover
- Wood harvest
- 'Permafrost-enabled deep ground
- Aerosol deposition
- Urban model

- Vertically-resolved soil C/N
- Co-limitation and acclimation of photosynthesis
- Variable river flow rates
- Natural CH₄ emissions
- Human triggering and suppression of fire
- Cold region hydrology
- Revised lake model
- Multiple urban density classes

CLM3.5 CLM4 CLM4.5 CLM5 (Feb 2018)

- Updated
- New pa integrat
- Frozen
- Soil eva
- TOPMC subsurface
- Simple a

- Carbon a Vertically-re
- Prognost phenolog
- Transient
- Wood hat
- 'Permafro deep grou

Urban m

Aerosol

•

- ost Co-limitation og of photosyl
 - Variable riv
 - Natural CH
 - Human trig suppression
 - Cold region
 - Revised lak
 - Multiple un classes

- Flexible leaf stoichiometry
- Leaf N optimize for photosynthesis
- Carbon costs for plant N
 uptake
- Plant hydraulics w/ hydraulic redistribution
- Spatially explicit soil depth
- Dry surface layer, revised GW
- Revised canopy interception
- MOSART river model (hillslope → tributary → main channel)
- Canopy snow storage and radiation
- Fresh snow density (T, wind)
- Simple firn model

- Global crop model (8 crop types)
- Transient irrigation and fertilization
- Dynamic landunits (nat veg
 ←→ crop, glacier ←→ nat veg,)
- Urban heating and AC, heat stress indices
- Deforestation, cropland fire
- New PFT and CFT distributions
- Carbon isotopes
- Coupled fire trace gas emissions Ecosystem demography (FATES),
- Ozone damage to plants
- Shifting cultivation

JAMES Journal of Advances in Modeling Earth Systems

Research Article 🔂 Open Access 💿 👔

The Community Land Model Version 5: Description of New Features, Benchmarking, and Impact of Forcing Uncertainty

David M. Lawrence 🕱, Rosie A. Fisher, Charles D. Koven, Keith W. Oleson, Sean C. Swenson, Gordon Bonan, Nathan Collier, Bardan Ghimire, Leo van Kampenhout, Daniel Kennedy, Erik Kluzek, Peter J. Lawrence, Fang Li, Hongyi Li, Danica Lombardozzi, William J. Riley, William J. Sacks, Mingjie Shi, Mariana Vertenstein, William R. Wieder, Chonggang Xu, Ashehad A. Ali, Andrew M. Badger, Gautam Bisht, Michiel van den Broeke, Michael A. Brunke, Sean P. Burns, Jonathan Buzan, Martyn Clark, Anthony Craig, Kyla Dahlin, Beth Drewniak, Joshua B. Fisher, Mark Flanner, Andrew M. Fox, Pierre Gentine, Forrest Hoffman, Gretchen Keppel-Aleks, Ryan Knox, Sanjiv Kumar, Jan Lenaerts, L. Ruby Leung, William H. Lipscomb, Yaqiong Lu, Ashutosh Pandey, Jon D. Pelletier, Justin Perket, James T. Randerson, Daniel M. Ricciuto, Benjamin M. Sanderson, Andrew Slater, Zachary M. Subin, Jinyun Tang, R. Quinn Thomas, Maria Val Martin, Xubin Zeng ... See fewer authors A

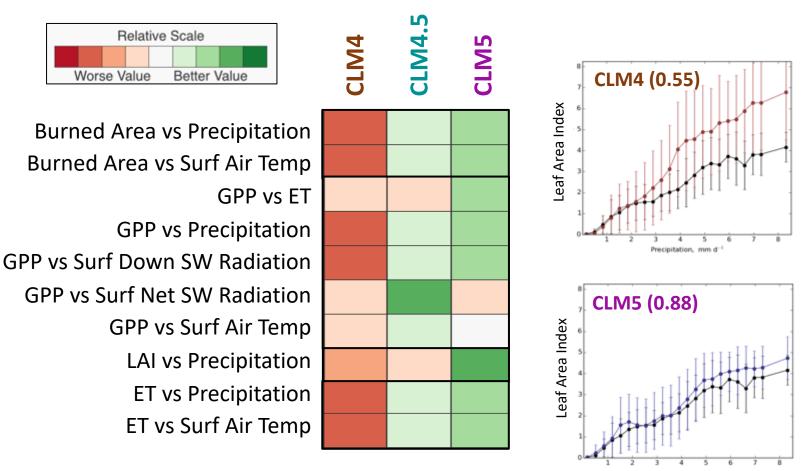
First published:19 October 2019 | https://doi.org/10.1029/2018MS001583 | Citations: 30

More than 50 researchers from ~30 institutions involved in development and assessment of CLM5

CLM land-only forced with GSWP3

www.cesm.ucar.edu/experiments/cesm2.0/land/diagnostics/clm_diag_ILAMB.html

International Land Model Benchmarking (ILAMB) project


for full CLM results:

- Integrates analysis of ~30 variables against 70+ global, regional, and sitelevel observational datasets
- Graphics and scoring system for
 - RMSE
 - bias
 - seasonal cycle phase
 - spatial patterns
 - interannual variability
 - variable-to-variable relationships

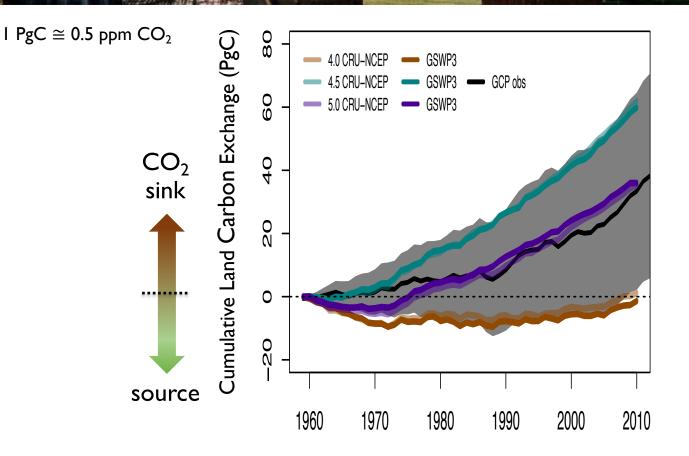
Variable-to-variable comparisons

anna an consurse.

Precipitation (mm day⁻¹)

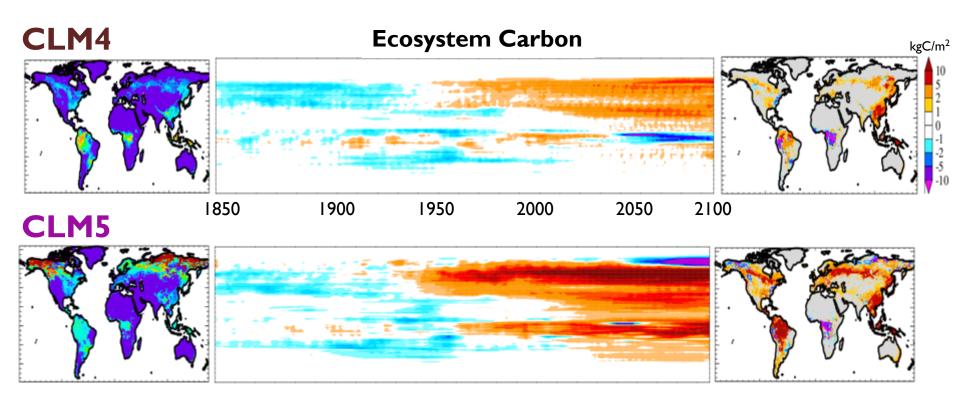
			de.	8			v			10	2	. N	6		.5	ک مہ		8.7	ક્	4	orthe another
		S	Nº G	N. A	22	4	S. C	°.4	5.0	° 0	NA LO	3 O	N.	000	8	30	1.61	16	12. N	E'N'	CANPO
	oct	çç		E E		7° 3	5.3	3×20	4	ð í	0,0	3.1	N Q	Y.S.	0,8	i. S	1.0	11.20	C.A	i No	ST.C.
Ecosystem and Carbon Cycle	Ť	Ě	Ŭ	Ť	Ť	Ť	Ě	Ě	Ň	Ŭ	Ň	,		,	,	Ň	Ň	È	Ň	Ň	
Biomass																					
Burned Area																					
Carbon Dioxide																					
Gross Primary Productivity																					
Leaf Area Index																					
Global Net Ecosystem Carbon Balance																					
Net Ecosystem Exchange																					
Ecosystem Respiration																					
Soil Carbon																					
Hydrology Cycle																					
Evapotranspiration																					
Evaporative Fraction																					
Latent Heat																					
Runoff																					
Sensible Heat																					
Terrestrial Water Storage Anomaly																					
Permafrost																					
Radiation and Energy Cycle																					
Albedo																					
Surface Upward SW Radiation																					
Surface Net SW Radiation																					
Surface Upward LW Radiation																					
Surface Net LW Radiation																					
Surface Net Radiation																					
Forcings																					
Surface Air Temperature																					
Diurnal Max Temperature																					
Diurnal Min Temperature																					
Diurnal Temperature Range																					
Precipitation																					
Surface Relative Humidity																					
Surface Downward SW Radiation																					
Surface Downward LW Radiation																					
Relationships																					
BurnedArea/GFED4S																					
GrossPrimaryProductivity/GBAF																					
LeafAreaIndex/AVHRR																					
LeafAreaIndex/MODIS																					
Evapotranspiration/GLEAM																					
Evapotranspiration/MODIS																					

ILAMB assessment of CMIP6 models


CLM land-only forced with GSWP3

(Annensteresserser

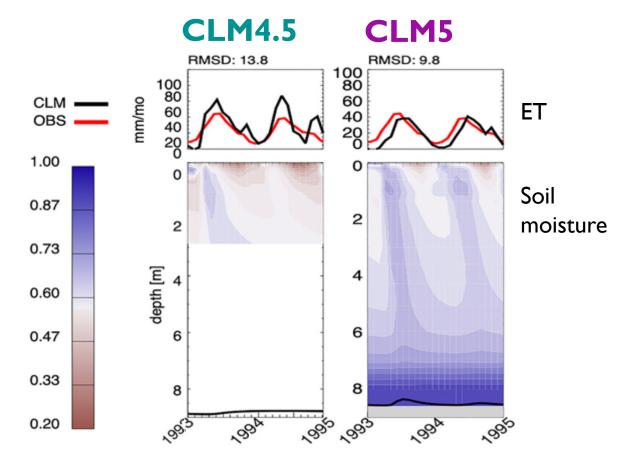
			10	
	Relative Scale	et		10
		CLM4	CLM4.5	CLM
	Worse Value Better Value	Ę		E
0-	®	<u> </u>	0	0
E	cosystem and Carbon Cycle			
	Biomass			
	Burned Area			
	Carbon Dioxide			
	Gross Primary Productivity			
	Leaf Area Index			
	Global Net Ecosystem Carbon Balance			
	Net Ecosystem Exchange			
	Ecosystem Respiration			
	Soil Carbon			
H	lydrology Cycle			
	Evapotranspiration			
4	Evaporative Fraction			
	Latent Heat			
	Runoff			
	Sensible Heat			
	Terrestrial Water Storage Anomaly			
	Permafrost			
F	adiation and Energy Cycle			
	Albedo			
	Surface Upward SW Radiation			
	Surface Net SW Radiation			
	Surface Upward LW Radiation			
	Surface Net LW Radiation			
	Surface Net Radiation			



Cumulative historical land carbon fluxes

- Improved response to CO₂ and N-addition (Wieder et al., 2019)
- On longer timescales, uncertainty associated with historical climate uncertainty is high (Bonan et al., 2019)
- Strong parametric dependence (Fisher et al., 2019)

Land carbon stock trends


Zonal mean year-on-year changes in land ecosystem carbon

Blues are losses of carbon Reds are gains of carbon

Soil hydrology (variable soil depth)

Connenscenserse.

Grid cell in southwest US

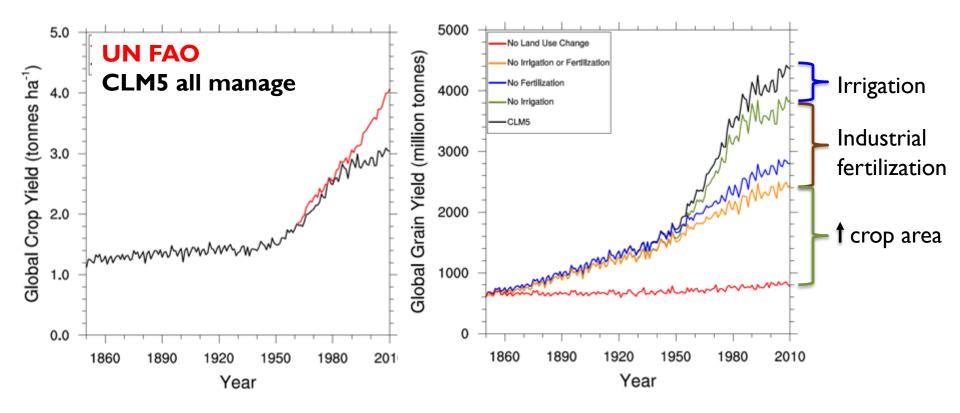
Exploring tradeoffs and co-benefits of various forms of land management

Included in default CLM5/CESM2

- Global crop model; planting, grain fill, harvest
- Crop irrigation
- Crop industrial fertilization
- Wood harvest
- Urban environments
- Anthropogenic fire ignition and suppression, degradation fires

Soy*

Cotton Rice * Temperate and tropical varieties



Land-only land management experiments with CLM5

Embedded impacts model

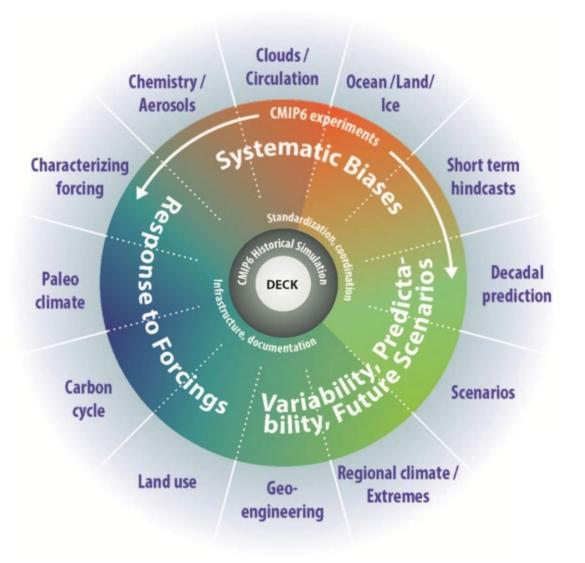
Crop Yield

Lombardozzi et al., 2020

Terrestrial Processes in CMIP6

Coordinated activities to assess land role and response to climate and climate change

• Land-only simulations forced with obs historical climate, land systematic biases

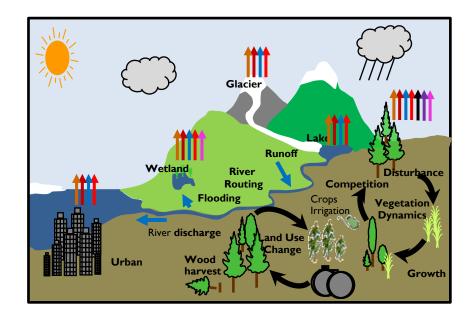

• Land Use (LUMIP)

land use forcing on climate and carbon, impacts of land management, land management as mitigation

• Water, Land-atmos (LS3MIP) biogeophys feedbacks including soil moisture and snow feedbacks

• Carbon (C4MIP)

land biogeochemical feedbacks on climate, permissible emissions

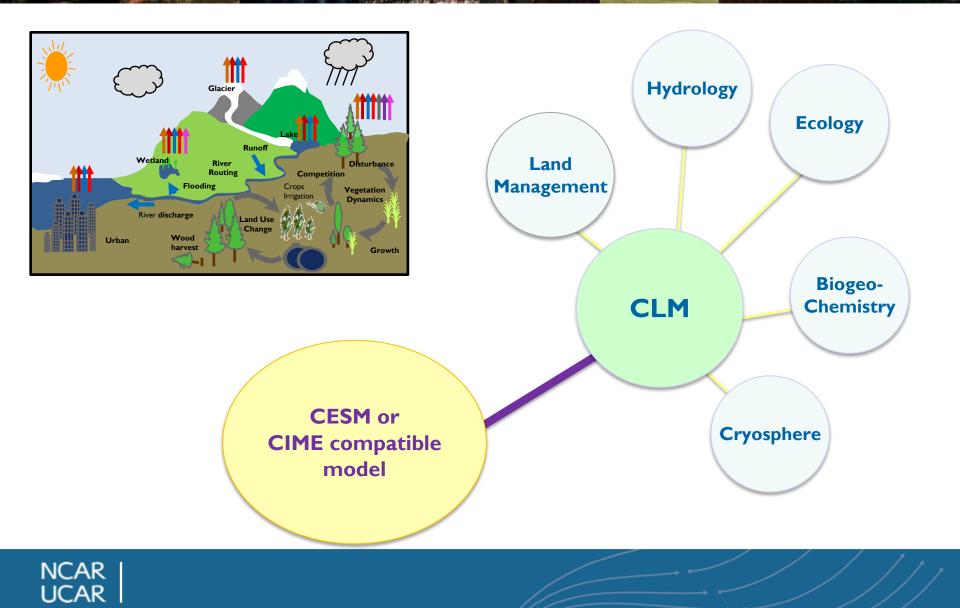


The CLM5 Development Process

Scientific priorities driving CLM development

Understanding and predicting ...

- land processes in weather, climate variability, and climate change
- ecosystem vulnerability/resilience and impacts on carbon cycle and ecosystem services
- sources of predictability from land; ecological prediction
- land management for climate change and GHG mitigation; tradeoffs and co-benefits
- water and food security



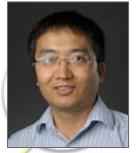
For CLM5, parallel focus on mechanistic improvements and expansion of capabilities

- hydrology more consistent with state-of-art understanding
- more ecologically-relevant plant carbon, nutrient, and water dynamics
- expansion of representation of land management

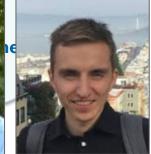
The community that built CLM5

Consenscenserse A

The community that built CLM5 Contributions rolling in from 2012-2016



Management



A big pile of things, will they work together?

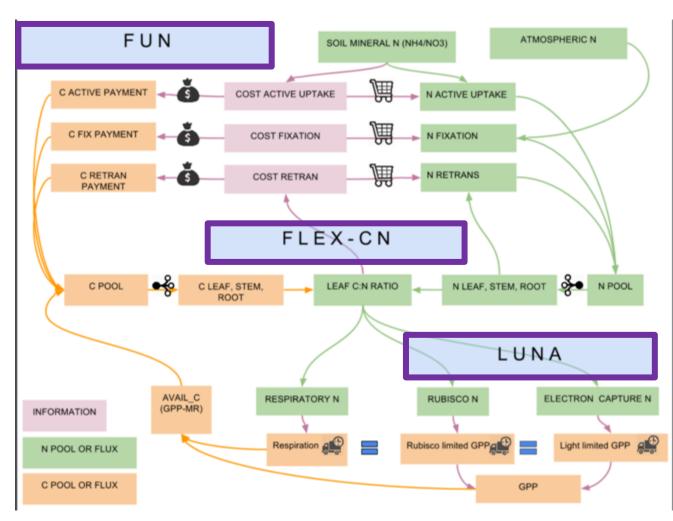
- Flexible leaf stoichiometry
- Leaf N optimize for photosynthesis
- Carbon costs for plant N uptake
- Plant hydraulics w/ hydraulic redistribution
- Spatially explicit soil depth
- Dry surface layer, revised GW
- Revised Canopy interception
- MOSART river model (hillslope → tributary → main channel)
- Canopy snow storage and radiation
- Fresh snow density (T, wind)
- Simple firn model

- Global crop model (8 crop types)
- Transient irrigation and fertilization
- Dynamic landunits (nat veg ←→ crop, glacier ←→ nat veg,)
- Urban heating and AC, heat stress indices
- Deforestation, cropland fire
- New PFT and CFT distributions
- Carbon isotopes
- Coupled fire trace gas emissions Ecosystem demography (FATES),
- Ozone damage to plants
- Shifting cultivation

A big pile of things, will they work together?

Software integration

... and science integration



A big pile of things, will they work together?

Merging 3 branches of nitrogen-cycle development

Integration of contributions

Climate Change and Terrestrial Ecosystem Modeling

Integration of contributions into CLM

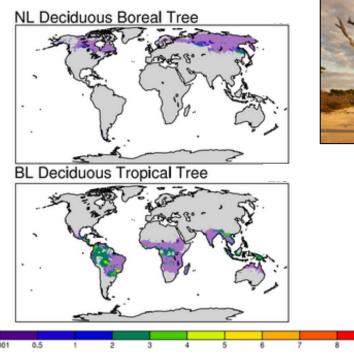
Commencial States

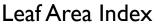
Finally, a model configuration that runs with everything we wanted

software integration

... and science integration

Integration of contributions into CLM


Finally, a model configuration that runs with everything we wanted



... but many new uncertain parameters and a growing realization that in some parts of the parameter space, plants do not survive through spinup

CORRECT COSTA

"The Dead Plant Problem"

Solving the Dead Plant Problem

Constant Constants

Global parameter optimization via machine learning!

many attempts, mostly dead

... meanwhile, the rest of the team focused on painstaking 'hand-tuning' of parameters

... while I ran interference with Jean-Francois

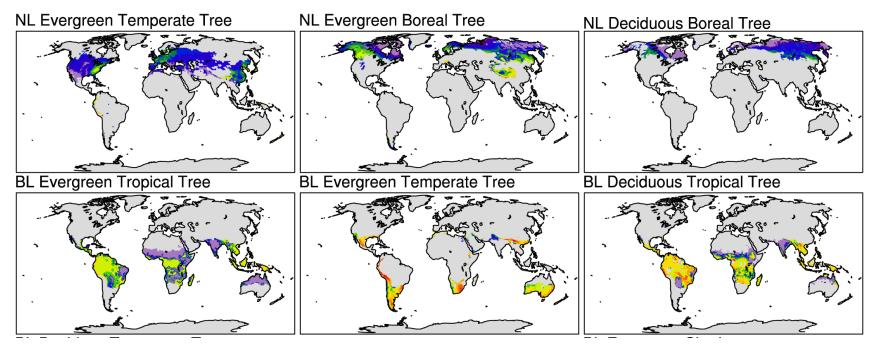
January 25, 2017 (a reenactment)

The scene: We were desperately trying to finalize CESM2 so that we could take advantage of the Cheyenne / Yellowstone overlap to run CMIP simulations. After multiple extensions, Jean-Francois gave us one last weekend to sort out our parameter problems or revert to CLM4.5. On Friday, Keith Oleson set off two CLM spinups, one with a new machine-learning calibrated parameter set and one with our best hand-tuned parameters.

6:45am Monday morning: Keith comes into my office and shows me the calibrated parameter results – mainly dead plants. Dave – "ok, that's expected, check the other parameter set."

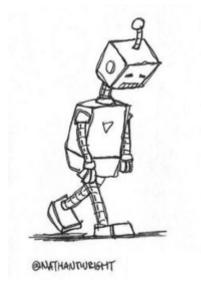
10 minutes later: email from Keith – "Plants in backup parameter set are not surviving either. Uh-oh."

20 minutes later: another email from Keith – "Scratch that. Bug in my code. Backup parameter set results looks great! "

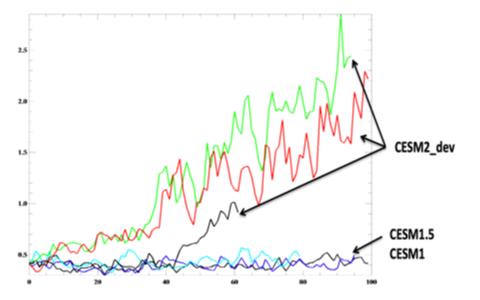

Solving the Dead Plant Problem

Connego Constantion

Finally, most plants were living and many other metrics looked good



b.e20.BHIST.f09_g17.20thC.215_01_1888: ANN Max TLAI (m² m⁻²)



MISADVENTURES IN PARAMETERIZATION AND WHY THE ROBOTS HAVEN'T WON (YET)

BEN **SANDERSON**, ROSIE **FISHER**, David **Lawrence**, Keith **Oleson** and Will **Weider**

(YET) see intro to CLM5 Large Parameter Perturbation Experiments Community Project in Will Wieder's LMWG presentation this afternoon

Timeseries of sea ice thickness in Labrador sea

Chimera-like parameter file

Solving the Dead Plant Problem

Constant Constants

The giant crop problem The irrigation problem The glacier runoff problem The C4 grass productivity problem The hydraulic redistribution problem The energy conservation problem

February 2018 CLM5 Release!

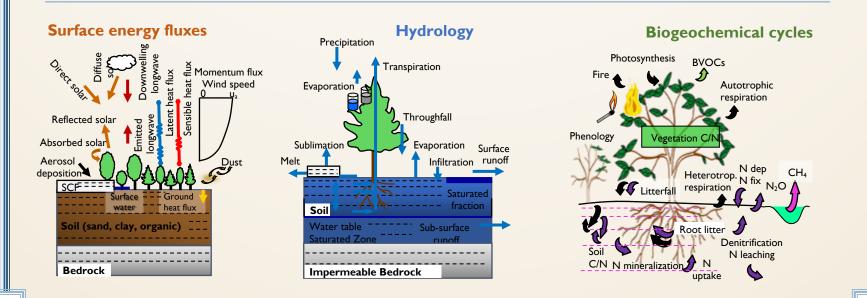
Perspectives on community driven model development

• Earth System model development is hard

- Research priorities can be used to guide decisions
- A robust and diverse development and user community is essential (and fun)
- Build and maintain that community
 - Be responsive to contributing collaborators
 - Encourage contributors to take ownership
 - Provide clear software development and decision-making guidance
 - Acknowledge and reward model development

LMWG Andrew Slater Award

Annual award, sponsored by Drew's family, for the "best student or postdoc performance" at winter LMWG meeting



The Land Model Working Group Andrew Slater Award


Is hereby granted to:

???

for best student or postdoc performance at LMWG Workshop

The Land Model Working Group Andrew Slater Award

Perspectives on community driven model development

- Earth System model development is hard
- Research priorities can be used to guide decisions
- A robust and diverse development and user community is essential (and fun)
- Build and maintain that community
- Clean, well-structured, and well-documented code is worth its weight in gold
- Full integration requires in-house experts
- Set realistic timelines and try hard to meet them
 - Not:"I love deadlines. I like the whooshing sound they make as they fly by." Douglas Adams

Perspectives on community driven model development

- Earth System model development is hard
- Research priorities can be used to guide decisions
- A robust and diverse development and user community is essential (and fun)
- Build and maintain that community
- Clean, well-structured, and well-documented code is worth its weight in gold
- Full integration requires in-house experts
- Set realistic timelines and try hard to meet them
- Don't panic!
- Keep it fun!

Keep it fun!

Keep it fun!

"Some people think football (soccer) is a matter of life and death

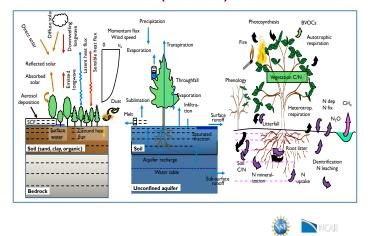
... I assure you, it's much more serious than that"

Keep it fun!

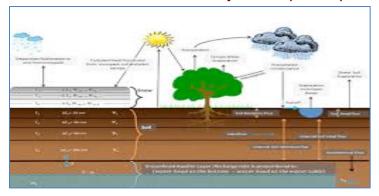
"Some people think climate / land modeling is a matter of life and death

... I assure you, it's much more serious than that"

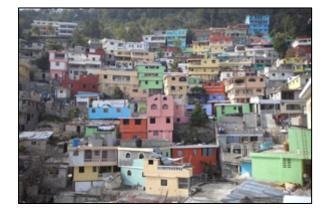
Thanks again!



The "situation"

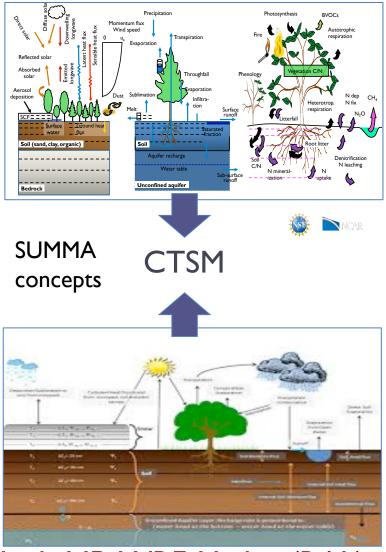

I. Model proliferation

Increasing number of land models, including 2 major models at NCAR


CLM (CGD)

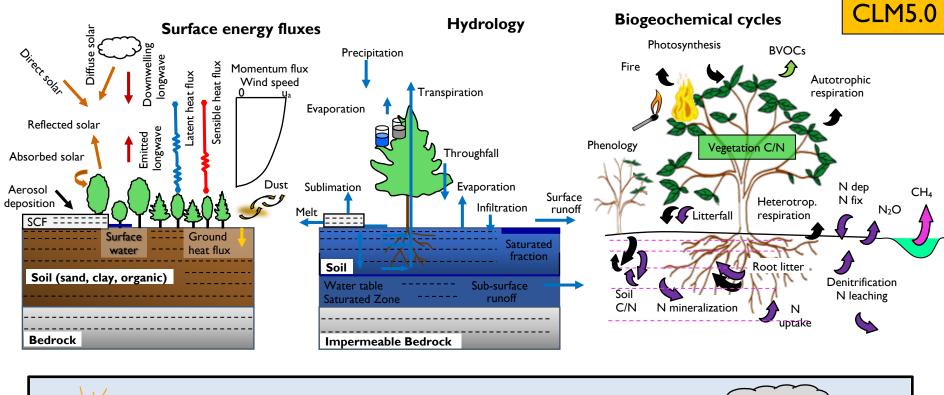
Noah-MP, WRF-Hydro (RAL)

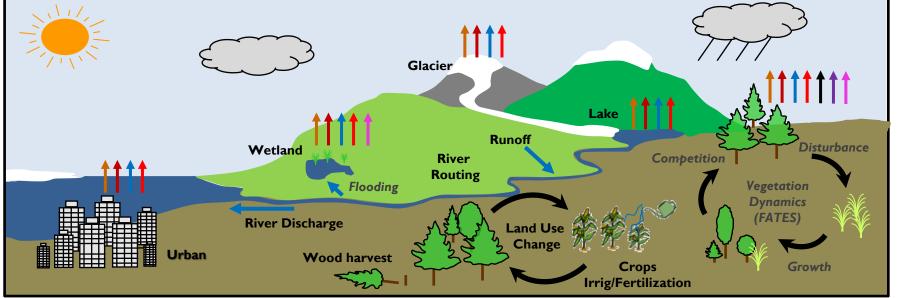
2."Shantytown" syndrome Ad-hoc approach to model development


NCAR is sponsored by National Science Foundation 6/15/20

The Community Terrestrial Systems Model

a model for research and prediction in climate, weather, water, and ecosystems

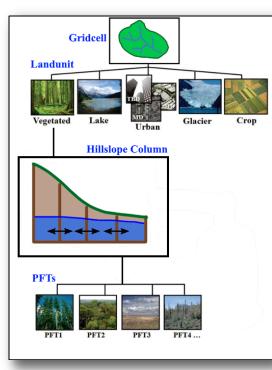

CLM (CGD)



Noah-MP, WRF-Hydro (RAL)

Unify land modeling across NCAR

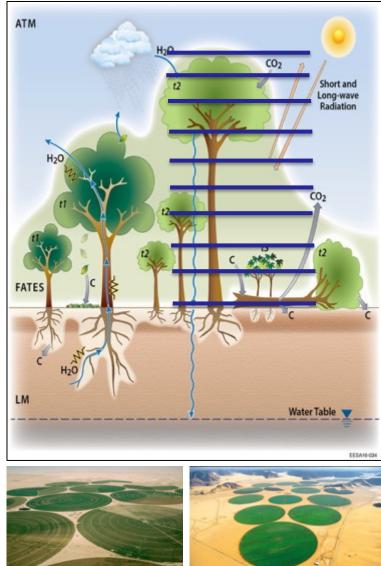
- More efficient use of NCAR and community resources
- Consistent with NCAR emphasis on unified modeling
- Extend NCAR leadership in community modeling
- Accelerate advances
- Increase flexibility and robustness of process representation, spatial disaggregation, and numerical solution (SUMMA concepts, modularization)
- Enable more hypothesis-driven science
- Integrate and expand land modeling research and development community
- Expand funding opportunities?



Lawrence et al., 2019

CLM continually evolving in response to research needs of next generation science questions

- Ecosystem vulnerability and impacts on carbon cycle and ecosystem services
- Sources of predictability from land processes; Ecological prediction
- Impacts of land use and land-use change on climate, carbon, water, and extremes
- Water and food security in context of climate change, climate variability, and extreme weather



Lateral fluxes of water

Water and land management

Ecosystem Demography / Multi-layer canopy

THE CHRONICLE OF HIGHER EDUCATION

The Scientific Paper Is Outdated

For the sake of research, their careers, and their mental health, scientists should spend more time developing software

By Ryan Abernathey | FEBRUARY 16, 2020

Martin Leon Barreto for The Chronicle

www.chronicle.com/article/The-Scientific-Paper-Is/248045

The interdisciplinary evolution of land models

COMPANY OF STREET, ST

The interdisciplinary evolution of land models

Constant Constants

Land as a lower boundary to the atmosphere Land as an integral component of the Earth System

Surface Energy Fluxes					
70's	80's	! 90's	! 00's	! 10's	
Figure: Fisher, Lawrence, Bonan, Clark, unpublished					