Implementing Plant Hydraulics in the Community Land Model

Daniel Kennedy^{1,2} Pierre Gentine¹, Sean Swenson², Keith Oleson², Rosie Fisher^{2,3}, Dave Lawrence², Antonio Lola da Costa⁴

1: Columbia University, Dept of Environmental Engineering

2: Climate and Global Dynamics Lab, NCAR

3: CERFACS Toulouse

4: Centro de Geociências, Universidade Federal do Pará, Belém, Pará, Brazil

photo: Aaron Ellison

How I started with CLM:

2015 land model working group winter meeting

ANISOHYDRICITY IN CLM: A PROTOTYPE STUDY

Daniel Kennedy, Pierre Gentine, Columbia University

RESOURCES

Computing time

Hosted visit, Summer 2016

MORE RESOURCES

Keith Oleson

Rosie Fisher

fundamentally has two jobs:

- how much water stress (β)?
- where in the soil column is the transpiration coming from?

sunlit-leaf Ψ_{stem}, E_{shade} Soil-plant- $\psi_{\text{shade-leaf}}$ atmosphere k continuum model $\bigvee_{i=1}^{s,1} \Psi_{soil,1}$ Ψ_{root} $\wedge \wedge = \Psi_{\text{soil},2}$ $\Psi_{\text{soil},n}$

Stomatal trade-off

Carbon dioxide enters, while water and oxygen exit, through a leaf's stomata.

- Need to open pores to obtain CO₂
- But will lose water, which is often a limiting resource
- Plants can open and close stomatal pores in response to environmental conditions
- Different plants have developed different strategies

What do we expect going forward?

Friedlingstein et al. 2014

How do models perform?

Geophysical Research Letters

RESEARCH LETTER 10.1029/2018GL078131

Key Points:

- Most global vegetation models represent plant water limitation with a rarely tested empirical function based solely on soil moisture
- Carbon cycle uncertainty associated with such soil moisture stress functions is comparable to current

Soil Moisture Stress as a Major Driver of Carbon Cycle Uncertainty

A. T. Trugman¹ (D, D. Medvigy² (D, J. S. Mankin^{3,4} (D, and W. R. L. Anderegg¹ (D)

¹Department of Biology, University of Utah, Salt Lake City, UT, USA, ²Department of Biological Science Dame, Notre Dame, IN, USA, ³Division of Ocean and Climate Physics, Lamont-Doherty Earth Observa University, Palisades, NY, USA, ⁴Department of Geography, Dartmouth College, Hanover, NH, USA

"40-80% of the intermodel variability [in the carbon cycle] due to the functional form of soil moisture limitation"

an increase in drought globally with climate lant photosynthetic response to soil moisture tic response where plant water potentials resp ure stress may introduce significant uncertain ed the use of the soil moisture limitation function stem models. We found that soil moisture-limit certain component of the simulated carbon cy proximately 40–80% of the intermodel variabil alone. Our results highlight the importance of odels and illuminate several avenues for impro

How do models perform?

Confronting model predictions of carbon fluxes with measurements of Amazon forests subjected to experimental drought

Thomas L. Powell¹, David R. Galbraith^{2,3}, Bradley O. Christoffersen⁴, Anna Harper^{5,6}, Hewlley M. A. Imbuzeiro⁷, Lucy Rowland⁸, Samuel Almeida⁹, Paulo M. Brando¹⁰, Antonio Carlos Lola da Costa¹¹, Marcos Heil Costa⁷, Naomi M. Levine¹, Yadvinder Malhi³, Scott R. Saleska⁴, Eleneide Sotta¹², Mathew Williams⁸, Patrick Meir⁸ and Paul R. Moorcroft¹

¹Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA; ²School of Geography, University of Leeds, Leeds, LS2 9JT, UK; ³Environmental Change Institute, School of Geography and the Environment, University of Oxford, Oxford, OX1 3QY, UK; ⁴Department of Ecology and Evolutionary Biology, University of Arizona, Tucson,

"Model predictions ... poorly replicated the response to drought treatment" Department of Atmospheric Science, Colorado State University, a, CEP 36570-000, Minas Gerias, Brazil; ⁸School of GeoSciences, ¹⁰Instituto de Pesquisa Ambiental da Amazônia, CEP 71503-505, I; ¹²Embrapa Amapá, Macapá, CEP 68903-419, Amapá, Brazil

te of Amazon rainforests in response to climate

terrestrial biosphere models (Community Land

Received: 12 February 2013 Accepted: 20 May 2013 Model version 3.5 (CLM3.5), Ecosystem Demography model version 2.1 (ED2), Integrated Blosphere Simulator version 2.6.4 (IBIS), Joint UK Land Environment Simulator version 2.1

Vegetation Water Use (in a nutshell)

- Water flows down pressure gradients
- 2. Plants extract water from the soil by allowing the pressure in their vasculature to fall lower than it is in the soils.
- 3. But if the pressure gets too low, it can damage the vasculature

Some terminology

- 1. Water potential ≈ pressure
- Units = Megapascals (MPa) 1atm ≈ 0.1 MPa
- 3. Symbol: Ψ
- 4. Values are negative

Soil-plantatmosphere continuum

fundamentally has two jobs:

- how much water stress (β)?
- where is the transpiration coming from?

Soil **M**oisture **S**tress

CLM4.5

- 2 parameters
- empirically derived
- calculates root water uptake from soil potentials
- calculates water stress from soil potentials

Soil **M**oisture **S**tress

CLM4.5

- 2 parameters
- empirically derived

β~ [0,1] → Photosynthesis → Transpiration

1. Conflicts with current theory of vegetation water use
 2. Extreme scarcity of soil water potential measurements

 $\psi_{\mathsf{soil},\mathsf{n}}$

T_a

 q_a

CLM5

- 4 parameters
- adds prognostic plant water potentials
- stronger physical basis
- calculates root water uptake from root water potential
- calculates water stress from leaf water potentials

CLM5

W

fr

p

- 4 parameters
- adds prognostic plant

β~ [0,1] → Photosynthesis → Transpiration

- ^{si} 1. Better comports with hydraulic theory
 - Water stress variable exists
 - above ground → possible to validate

 $\psi_{\mathsf{soil,n}}$

T_a

 \mathbf{q}_{a}

fundamentally has two jobs:

- how much water stress (β)?
- where in the soil column is the transpiration coming from?

Experiment Description

Kennedy et al. 2019, JAMES

Caxiuanã, Brazil

- Critical biome
- Well-instrumented
- Highly studied
- Drought signal
 - Seasonally dry (Aug-Nov)
 - Experimental precip exclusion plot

Experiment Description

Results

Is PHS functioning as expected?

Soil Moisture Stress

 driven only by soil moisture

Plant Hydraulic Stress

- responds to both:
 - soil moisture
 - o VPD

Stress vs. VPD (and soil moisture)

Subset for downwelling solar radiation between 400 and 425 W/m2 (~55th percentile)

Data subdivided by root-zone soil moisture

Results

How do we compare with field observations

Transpiration: comparison with observations

- Plotting error vs. soil water potential
- Line represents median
- Shading spans interquartile range
- PHS improvements derive from relationship between transpiration and soil potential

PHS yields improved soil moisture dynamics

SMS root zone is too dry during dry episodes

Global Results

Kennedy et al., in prep

PHS shows stronger interannual correlations between GPP and terrestrial water storage (TWS)

- histograms represent the distribution of correlations across gridcells in a semi-arid domain
- see Humphrey et al. 2018, which suggests that ESMs significantly underestimate the GPP~TWS relationship

Conclusions:

- PHS is the default vegetation water use parameterization in CLM5/CESM2
- Better comports with hydraulic theory
- Exposes the model to a new suite of observations for validation and parameter estimation
- Creates an entry point for plant hydraulic researchers to test hypotheses on broader spatial scales

QUESTIONS?

and the state of the second second

a second s

ohoto: Aaron Ellison