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Carbon dioxide enters, while water and

StO m ata I t ra d e - Off oxygen exit, through a leaf's stomata.

e Need to open pores to obtain CO,
e But will lose water, which is often
a limiting resource

e Plants can open and close
stomatal pores in response to
environmental conditions

e Different plants have developed
different strategies

credit: University of California Museum of Paleontology



What do we expect going forward?
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Friedlingstein et al. 2014
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Vegetation Water Use
(in a nutshell)

1. Water flows down pressure
gradients

2. Plants extract water from the soil
by allowing the pressure in their
vasculature to fall lower than it is
in the soils.

3. Butif the pressure gets too low, it
can damage the vasculature



Some terminology
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Water potential = pressure

Units = Megapascals (MPa)
1atm = 0.1 MPa

Symbol: &

Values are negative



Soil-plant-

atmosphere
continuum T,
fundamentally has B~ [O]1] d,

two jobs: - Photosynthesis
-> Transpiration
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water stress (3)?
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Soil
Moisture
Stress

CLM4.5

e 2 parameters

e empirically derived

e calculates root water
uptake from
soil potentials

e calculates water stress
from
soil potentials

B~ [0,1]
-> Photosynthesis
-> Transpiration
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Soil

Moisture

Stress T,

CLM4.5 B~ [O]1] q,
-> Photosynthesis

e 2 parameters - Transpiration

e empirically derived

Conflicts with current theory

. of vegetation water use — Y50l 1
Extreme scarcity of soil water — Vgii2
potential measurements |

4.

wsoil,n




Plant
Hydraulic
Stress

CLMS5

e 4 parameters

e adds prognostic plant
water potentials

e stronger physical basis

e calculates root water
uptake from
root water potential

e calculates water stress
from leaf water
potentials

B~ [0,1]
-> Photosynthesis
-> Transpiration
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Plant

Hydraulic
Stress
CLM5 B~ [O]1]
-> Photosynthesis
e 4 parameters - Transpiration

e adds prognostic plant

° . Better comports with

* hydraulic theory Yroot @— ¥Vsoil, 1
. Water stress variable exists — Vg1 2

° above ground =» possible to <

validate <

wsoil,n




Plant
Hydraulic
Stress

sunlit-leaf
fundamentally has
two jobs:

Eshade
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Experiment
Description




Caxiuana, Brazil

Venezueldn, oiiianhe R e Critical biome
Guyanah ¢~ e Well-instrumented

e Highly studied

Caxiuafia e Drought signal

o Seasonally dry (Aug-Nov)
o Experimental precip
exclusion plot

Brazil

Bolivia o\

‘*..,_VParagb"a‘y'
Argentina—._

Caxiuana, Brazil

Experiment Description



Is PHS
functioning

Results e

expected?




Soil Moisture Stress

Plant Hydraulic Stress
responds to both:

driven only by
soil moisture
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How do we

compare

Results with field

observations
P,




Transpiration:
comparison with
observations

e Plotting error vs. soil
water potential

e Line represents median

e Shading spans
interquartile range

e PHS improvements
derive from relationship
between transpiration
and soil potential
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PHS yields SMS
Improved soil
moisture

dynamics

SMS root zone is too
dry during dry

episodes
PHS
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Global Results



Latitude

Latitudinal mean

GPP IAV, PHS-SMS
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How does
PHS affect
variability in
Photosynthesis
(GPP)?
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Weighted density

GPP correlation
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Pearson R: GPP~TWS

with TWS
PHS
SMS
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PHS shows stronger
interannual correlations
between GPP and
terrestrial water storage
(TWS)

e histograms represent the

distribution of correlations across
gridcells in a semi-arid domain

e see Humphrey et al. 2018, which

suggests that ESMs significantly
underestimate the GPP~TWS
relationship



Conclusions:

e PHS is the default vegetation water use parameterization in

CLMS5/CESM2

Better comports with hydraulic theory

e Exposes the model to a new suite of observations for validation
and parameter estimation

e Creates an entry point for plant hydraulic researchers to test
hypotheses on broader spatial scales



QUESTIONS?



