Turbulent dissipation is not pressure damping: Moving beyond Mellor's single master length scale

Zhun Guo, Vincent E Larson

University of Wisconsin Milwaukee

guozhun@uwm.edu

Jun/16/2020

Outline

- Background
- Turbulent time scale of dissipation and nonhydrostatic pressure fluctuations in nature are different
- Design Multi-time-scale parameterization
- Global results and sensitivity studies
- Conclusions

Some of the largest errors in Global models are related to cloud

Stratocumulus and shallow Cumuli are not distinct enough
 Coastal stratocumulus is underestimated
 They are evident in SWCF:

Cited from *Bogenschutz* et al. 2018 GMD

Cited from Rasch et al. 2019 JAMES

Motivations

Small-scale turbulent variability in moisture and heat content can be damped by two distinct processes:

- 1. variability can be damped by turbulent dissipation; that is, variability can be smoothed out by molecular diffusivity or viscosity.
- the motion of a parcel of fluid can be opposed (i.e. "damped") by non-hydrostatic pressure fluctuations.

In stably stratified layer above cloud top, turbulent flux has stronger damping than variance

Non-breaking Gravity wave does not transport heat, but the undulation lets scalar variances to be large.

Why turbulent time scale of turbulence dissipation and non-hydrostatic pressure fluctuations should be different?

1.
$$0 \approx \frac{\partial \overline{x'^2}}{\partial t} = -\overline{w'x'}\frac{\partial \overline{x}}{\partial z} - \frac{1}{\tau_x}(\overline{x'^2}) - \frac{1}{\rho_s}\frac{\partial \rho_s \overline{x'^2w}}{\partial z}$$

2.
$$0 \approx \frac{\partial \overline{w'x'}}{\partial t} = -\overline{w'^2} \frac{\partial \overline{x}}{\partial z} + (1 - C7) \frac{g}{\theta_0} \overline{x'^2} - \frac{1}{\tau_{wx}} (\overline{w'x'}) - \frac{1}{\rho_s} \frac{\partial \rho_s \overline{w'^2x}}{\partial z}$$

x could be θ_l or q_t Consider a stably stratified inversion with no turbulent cascade. For non-breaking gravity waves, $\overline{w'x'} = 0$, $\overline{x'^2} > 0$, so we have: $\tau_x \to \infty$ (because turbulent dissipation is weak) &

 $\tau_{wx} \rightarrow 0$ (because pressure damping is strong)

 $au_x
eq au_{wx}$

Multi time scale (τ) parameterization : τ_{noN}

First, for layers that are neutral or buoyantly unstable (N \leq 0):

$$\frac{1}{\tau_{noN}} = C_{i\tau bkgnd} \frac{1}{\tau_{const}} + C_{i\tau sfc} \frac{u_*}{k(Z - Z_{displace})} + C_{i\tau shear} \sqrt{\frac{\partial \overline{u}^2}{\partial z}} + \frac{\partial \overline{v}^2}{\partial z} \quad (3)$$

- 1. Background Damping $C_{i\tau bkgnd} \frac{1}{\tau_{const}}$, layers that are shear-free and located well above the lower surface.
- 2. Surface Damping $C_{i\tau sfc} \frac{u_*}{k(Z-Z_{displace})}$, Von Karman constant k, u_* friction velocity.
- 3. Shear Damping $C_{i\tau shear} \sqrt{\frac{\partial \overline{u}^2}{\partial z} + \frac{\partial \overline{v}^2}{\partial z}}$, wind shear would generate turbulence and hence dissipation.

In the stable layers, we damp fluxes more

However, in a stably stratified layer (N \ge 0), pressure terms will have an extra contribution :

$$\frac{1}{\tau_N} = C_{i\tau N} max(0, N) \tag{4}$$

stable stratification suppresses scalar fluxes more in noncloudy layers than it does in cumulus layers

(6)

$$\frac{1}{\tau_{N,clr}} = C_{i\tau N,clr} max(0,N)H(-cf+cf_0)$$
(5)

For flux equations, we have

In stable layers, we damp variances less

For damping term of variance, we have

$$\frac{1}{\tau_{x'^2}} = Ri^{-1}(\frac{1}{\tau_{noN}}).$$

Ri is Richardson number

Multi-time-scale scheme is faster and has fewer tunable parameters

- *Multi-time-scale scheme* decreases the total runtime of CLUBB core by about 15%
- It reduces the number of tunable parameters

Lscale scheme	Tau scheme
C1	/
C1b	/
C1c	/
C2rt	/
C2thl	/
C2rtthl	/
C6rt	/
C6rtb	/
C6rtc	/
C6thl	/
C6thlb	/
C6thlc	/
C14	/
/	Citsfc
/	Citshea
/	Citbkgn
/	ϹϳτΝ
/	CitN,clr

$\frac{1}{\tau}$ s in global model (Hawaii)

The profiles of Hawaii look more cumulus-like

Does introducing a Multi-time-scale parameterization improve global simulations?

- We'll show some 1° (2°) simulations.
- Format of the following 2D figures
 Left panels: Right panels:
 Default E3SMv1 E3SMv1 E3SM-CLUBB-SILHS-tau (no ZM)
 Format of the following Profiles
 E3SMv1 1° CLUBB_silhs_tau 1°
 E3SMv1 2° CLUBB silhs tau 2°

Multi-time-scale improves coastal SC and distinction between SC and CU

-50.0 -60.0

RMSE 12.34

O°W CORR 0.86

E3SMv11° Max -0.22 anvil.E3SM v1.c W/m2 Mean -50.88 90° Min -162.80 60°N 0.0 -10.0 -20.0 -30.0 -40.0 30°N -50.0 0° -60.0 -70.0 -80.0 30°S -90.0 100.0 -110.060°S 120.0 90°S 120°E 0°E 60°E 180° 120°W 60°W 0°W Max 27.01 CERES-EBAF v2.8 (2001-2015) W m-2 Mean -47.13 90°I Min -123.17 60°N 0.0 -10.0 -20.0 30°N -30.0 -50.0 0° -60.0 -70.0 -80.0 -90.0 30°S 100.0 110.0 120.0 60°S 90°S 120°E 180° 120°W 0°E 60°E 60°W 0°W Max 82.68 Model - Observation Mean -3.74 Min -66.26 60°N 60.0 50.0 50.0 40.0 30.0 20.0 10.0 5.0 -5.0 30°N 0° -10.0 -20.0 -30.0 -40.0

30°5

60°5

90°S

0°E

60°E

120°E

180

120°W

60°W

Multi-time-scale improves coastal SC and distinction between SC and CU

SC increases near the coast

ERAI E3SMv1 CLUBB_silhs_tau

CLUBB_silhs_tau maximizes near cloud base in cumulus regimes

ERAIM E3SMv1 CLUBB_silhs_tau

CLUBB-SILHStau reproduces reasonable deep cumuli in West Pacific Warm Pool

If we set $\tau_{\chi}=\tau_{W\chi},$ then there is less distinction between SC and CU

Conclusions

- Turbulent time scale of turbulence dissipation and non-hydrostatic pressure fluctuations need to be parameterized separately;
- Introducing "Multi-time-scale parameterization" in higher-order-closure scheme is necessary;
- *Multi-time-scale parameterization* allows us to brighten coastal stratocumulus;
- Use of the new *multi-time-scale parameterization* in a global model improves the distribution of stratocumulus and shallow cumulus clouds.

Thank you for your attentions!