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Great Salinity Anomaly of the 1970s

e There has been decadal-scale low salinity events in the
subpolar North Atlantic (SPNA), first emerging in the
sub-Arctic seas, entering the North Atlantic, and moving
along the subpolar gyre

e The most pronounced event: during the late 1960s and
1970s, called Great Salinity Anomaly (GSA)

* Conventional view of GSA (Dickson et al. 1988):

1) Enhanced Fram Strait sea-ice export (FSSIE) in the late
1960s

2) Freshwater anomaly advected to the Labrador Sea,
shutting down deep convection during 1969-1971

3) Continued to move following the subpolar gyre and
returned back to sub-Arctic seas a decade later
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Great Salinity Anomaly of the 1970s

* GSA has received attention because of a potential role of Arctic-origin freshwater in shutting
down deep convection

* Several modeling studies support the conventional view
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However, the winter NAO was overall negative during 1960s and was the record low in 1969
(when the shutdown of deep convection occurred)

NAO-related surface buoyancy forcing predominantly controls the strength of deep
convection, thermohaline circulation (buoyancy-driven AMOC and subpolar gyre circulation),
and thereby northward transport of heat and salt from subtropics.
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However, the winter NAO was overall negative during 1960s and was the record low in 1969
(when the shutdown of deep convection occurred)

It is well known that NAO surface buoyancy forcing predominantly controls the strength of
deep convection, thermohaline (AMOC) circulation, and thereby northward transport of heat
and salt from subtropics.

No modeling studies have so far systematically compared the relative contribution of FSSIE
and NAO buoyancy forcing to GSA

» Gelderloos et al. (2012) found roughly equal contributions using observations and 1-D mixed
layer model

Also, the models used in previous studies (mostly early 2000s) are almost two decades old
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Model Simulations (CESM)

*  CESML1 (LENS) preindustrial control simulation (2200 year long)
- Later 1800 years are used for composite analyses

* 1°and 0.1° forced ocean - sea-ice simulations (FOSI-L and FOSI-H)
- Forcing: JRA55-do (1958-2018; Tsujino et al. 2018)
- FOSI-L: Long spin-up cycles (5 times) and 5th cycle is used for analysis
- FOSI-H: Only the first cycle is available (possible drift)
- anomalies are relative to the 1962-1976 reference period

*  CESM1 NAO surface heat flux forcing experiments (Kim et al. 2020)
- Used to investigate the role of a decade long NAO surface buoyancy forcing

*  CESM1 physics- and initial condition-perturbed experiments (Danabasoglu et al. 2019)
- Used to examine the dependency of the results on temperature bias in the Labrador Sea
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Simulated GSA in FOSIs
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Composite Analysis

Salinity (<100m; shading)/Mar. MLD (contours) Anomaly Composites

(a) FSSIE Event Composite (n= 39)
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Freshening due to Suppressed Convection
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Weaker Mixing

Monthly Lab Sea Salinity Anomaly Profile
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Downstream Advection

Salinity (<100m) 2-yr Running Averages
1972-1973 1973 - 1974 1974 - 1975 1975 - 1976
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Downstream Advection
Salinity (<100m) 2-yr Running Averages

1972 - 1973 1973-1974 1974 - 1975 1975 - 1976
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https://doi.org/10.1175/JCLI-D-19-0530.1

AMOC

(c) EOSIs
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1) Enhanced Fram Strait sea-ice export (FSSIE) in the late
1960s

2}—Freshwateranomalyadvectedto-the LabradoerSes;

2) The shutdown of deep convection and freshening in
the interior Labrador Sea due to strong anomalous
heat gain

3) FSSIE-induced fresh anomaly propagated along the

boundary currents to the gyre boundary, but
dissipated there

3} conts I oo I bool I
returred-back-to-sub-areticseasa-decadetater
4) The propagation of the fresh anomaly along the

subpolar gyre coming from the subtropics due to
weaker thermohaline circulation
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Revised GSA Mechanisms

Belkin et al. (1998)




Climatologies

March Sea-Ice Thickness March MLD

(a) FOSI-L (b) CESM1-PI (b) CESM-PI

| L . T

L . L
0.05 0.75 1.45 2.15 2.85 3.55 4.25 4.95 565 6.35 0 160 320 480 640 800 960 1120 1280 1440 1600
[m] [m]

T — 2020 CESM Workshop, CVCWG, W. M. Kim (whokim@ucar.edu)




Individual MLD anomalies of the FSSIE events
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Dependency on Lab Sea Temperature Bias

Because of the nonlinearity of the equation of state, a density change is greater at colder
temperature and Lab Sea salinity bias is positive in CESM1

Similar composite analysis performed from physics- and initial condition-perturbed
experiments (8 experiments) using the same CESM1 (Danabasoglu et al. 2019)

Composite Analysis from Perturbed Experiments
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3 6.9 1214 Years
Baffin Bay

3 6.9 1214 Years
Baffin Bay
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