The Impacts of Observed Arctic Sea-ice Variability on the Cold Season Atmospheric Circulation in Large-ensemble AGCM Experiments

Yu-Chiao Liang, Claude Frankignoul, Young-Oh Kwon, Gokhan Danabasoglu, Stephen Yeager, and European partners

June 17, 2020 CVCWG Session,25th Annual CESM Workshop

Thanks to 8 other groups: CNRS-LOCEAN, NERSC, DMI, MPI-M, UoS, CMCC, NLeSC, IAP

Observational Arctic sea ice-NAO linkage

NAO

November SIC EOF1

Simon, Frankignoul, Kwon et al. (2020)

GCM is inconsistent in simulating North Atlantic Oscillation response

Cassano et al. (2014); Screen et al. (2014); many others

Peings & Magnusdottir (2014); many others

Coordinated Large-ensemble AGCM Experiments

9 AGCMs

165 members

Model Name	Institution	Horizontal resolution (lat x lon)	# of vertical levels (top level)	# of ensemble members	Adjustment of SST/SIC	CMIP6 External Forcing used	Referecne
CESM2-WACCM6	WHOI-NCAR	0.94° x 1.25° (~100 km)	70 (4.5x10 ⁻⁶ hPa)	30	Yes	CMIP6	Gettelman et al. (2019)
LMDZOR6	LOCEAN-IPSL	1.26° x 2.5° (~150 km)	79 (0.01 hPa)	30	Yes	HighResMIP	Hourdin et al. (2020)
NorEXM2-CAM6	NERSC	0.94° x 1.25° (~100 km)	32 (3.4 hPa)	30	Yes	CMIP6	Bentsen et al. (2013)
EC-Earth3-DMI	DMI	T255 (~80 km)	91 (0.01 hPa)	20	Yes	CMIP6	EC-Earth (2019) Thomas et al. (2019)
IAP4.1	IAP	1.4 ° x1.4 °	30 (2.2hPa)	15	Yes	1979-2005: CMIP historical 2006-2013: CMIP5 RCP8.5	Sun et al. (2012)
CMCC-CM2-HR4	СМСС	0.9° x 1.25° (~100 km)	30 (2 hPa)	10	No	HighResMIP	Cherchi et al. (2018)
EC-Earth3-NLeSC	NLeSC	T511 (~40km)	91 (0.01 hPa)	10	Yes	HighResMIP	EC-Earth (2019) Thomas et al. (2019)
ECHAM6.3	MPI-M	T127 (~100km)	95 (0.01hPa)	10	Yes	CMIP6	Stevens et.al.(2013) Mueller et. al. (2018)
HadGEM3-GC3.1	UoS	0.83° x 0.55° (~60 km)	85 (85 km)	10	No	HighResMIP	Walters et al. (2017)

Coordinated Large-ensemble AGCM Experiments

Time-varying Arctic sea ice and global SST and GHG forcings (1979-2014)

Climatological Arctic sea ice and time-varying global SST and GHG forcings

EXP2/**SIC**_{clim} (Forcing without time-varying Arctic sea-ice)

EXP1/ALL

(All forcing)

Hadley SST and SIC

Scientific Questions

- Can AGCMs simulate the Arctic sea-ice impacts on large-scale atmospheric circulation, in the Northern Hemisphere cold season (OND and JFM), identified in reanalysis datasets?
- 2. What is the role of internal atmospheric variability?
- 3. How large is the Arctic sea-ice forced atmospheric circulation?

Scientific Questions

- Can AGCMs simulate the Arctic sea-ice impacts on large-scale atmospheric circulation, in the Northern Hemisphere cold season (OND and JFM), identified in reanalysis datasets?
- 2. What is the role of internal atmospheric variability?
- 3. How large is the Arctic sea-ice forced atmospheric circulation?

Basic Assumptions

- 1. Forced component can be separated from internal variability by taking multimodel ensemble mean $(MMM, \overline{(X)})$ over 165 members.
- 2. Atmospheric circulation response to Arctic sea-ice variability is sufficiently linear (additive).

- ALL: component forced by SIC, SST, GHG, radiative forcings
- SIC_{clim}: component forced by
 SIC, SST, GHG, radiative forcings
- Arctic sea-ice forced component can be represented as

ALL minus SIC_{clim} (SI MMM)

OND

OND

ERA5 reanalysis ALL MMM Range of ERA5 is similar to model distribution spread

- \rightarrow large internal variability contribution.
- Range difference between black and magenta shadings
 → reduction of internal variability
- 3. Despite effects of internal variability, the signs are all positive (warming trend).

normal distribution

OND

1.

Comparison of sea-level pressure trends in ALL MMM and ERA5

OND

Comparison of sea-level pressure trends in ALL MMM and ERA5

OND

Comparison of sea-level pressure trends in ALL MMM and ERA5

OND

Arctic sea ice-forced (SI MMM) trends in surface and mid-troposphere

SI MMM = $\overline{\text{ALL}}$ minus $\overline{\text{SIC}_{\text{clim}}}$

Arctic sea ice-forced (SI MMM) trends in surface and mid-troposphere

strong localized warming

localized low SLP remote high SLP

weakened/ southward midlatitude jet

-AO/-NAO

pattern

Arctic sea ice-forced (SI MMM) trends in surface and mid-troposphere

strong localized warming

localized low SLP remote high SLP

Observational estimates from Simon et al. (2020) -AO/-NAO pattern 3.7±2.0 (60±20) m/decade

weakened/ southward midlatitude jet

Summary

- Arctic warming trends are reasonably simulated in AGCMs, but not for dynamical variables (large internal variability).
- The Arctic SIC-forced trend responses (–NAO) have smaller magnitudes compared to observational estimates.
- AGCMs underestimate the SIC-SLP co-variability at interannual timescale.

Please email me if you have questions: yliang@whoi.edu Thank you!

Scatter plot for SC against R of MCA on Dec SLP-Mar SLP in ALL

