On the prospect of developing <u>seasonal</u> to <u>decadal</u> (S2D) <u>soil moisture</u> forecasting system

Sanjiv Kumar Auburn University, AL USA Email: <u>szk0139@auburn.edu</u>

CESM 25th Annual Workshop (Virtual), June 15-17 2020

1. Can we develop S2D soil moisture forecasting system?

2. Why soil moisture has a higher predictability?

3. How can we develop S2D soil moisture forecasting system?

S2D Soil Moisture Potential Predictability in CESM-DP-LE

- CESM Decadal Prediction Large Ensemble Experiments (Yeager et al., 2018)
- 40-member ensemble forecasts
- Signal to total ratio metric (Guo et al., 2011)
- Anomalies are computed with respect to forecast climatology (1980 to 2015) (Kumar et al., 2014)
- Data from 1980 to 2015 are included in the analysis (Esit et al., in prep.)

Signal to total ratio Total = signal + noise

1. Can we develop S2D soil moisture forecasting system?

Answer: Yes, we can! At least there is suggestive evidence from the CESM-DP-LE experiment.

Comparing soil moisture with the precipitation predictability

- Soil moisture has a ۲ considerably higher predictability than precipitation
- Why?

SON

46-48

94-96

Signal to total ratio Total = signal + noise

Predictability of precipitation and soil moisture in AMIP experiments

Time series of observed and simulated precipitation (top), and soil moisture (bottom panel) their comparison with the observations in the Great Plains

Drivers of soil moisture variability

Soil Moisture Variability (σ_{S_t}) equation is derived from the first principle ($\Delta S = P - ET - R$)

1988 Illinois drought in soil moisture observations

Soil moisture anomaly reemergence in the root zone

Land-Atmosphere Coupling and vegetation interactions can increase the soil moisture residence time

Difference in soil moisture residence time in days between Land-Atmosphere coupled and uncoupled simulations (CLM4.5+CAM5): with interactive vegetation (left), and with satellite phenology (right)

Results shown are for JJA season

Esit and Kumar (in prep.)

- 2. Why soil moisture has a higher predictability?
 - Soil moisture memory (multi-season to a year)
 - Soil moisture anomaly reemergence (inter-annual)
 - Land-atmosphere coupling and vegetation interactions (subseasonal)

1. Land initialization is required in addition to the ocean

- Anomaly correlations of the land initial conditions (Ens # 34 from CESM-LE) with the ensemble average forecast (1980 to 2015)
- Land contributes to 32% (range: 26-36%) of the total predictability signal
- Anomaly correlation of the ens# 34 (used for land initialization) is significantly higher than that of the remaining 39 CESM-LE ensemble (thin gray lines)

Esit et al. (in prep.)

2. Spring (May) initialization in addition to the Fall (Nov.)

- A strong seasonal-cycle in the CESM-DP-LE forecasts skill
- Likely to be the effects of November 1st initializations!
- Integrated over all the years MAM season has the highest predictability and SON season the lowest
- COLA-ISI Experiments may also shed some light on this issue (Dirmeyer et al., 2013)

An artistic view of the proposed NG-SMF system

- Interactive Deep Learning-based analytics platform supported by scalable computing infrastructure
- Connecting the power of Artificial Intelligence with the Earth System Modeling
- A smart, agile, and adaptable system in meeting stakeholder needs and offering users the latest science in a highly accessible manner

"Let climate model do their best, and let Big-data do the rest"

Sanjiv Kumar Earth System Science Auburn University

Wonjun Lee Artificial Intelligence, and Cyberinfrastructure Yeshiva University

Imtiaz Rangwala Physical Scientist, and Stakeholder Interactions CIRES, CU Boulder

- 1. Kumar, S., M. Newman, Y. Wang, and B. Livneh, 2019: Potential Reemergence of Seasonal Soil Moisture Anomalies in North America. *J. Climate*, **32**, 2707–2734, <u>https://doi.org/10.1175/JCLI-D-18-0540.1</u>.
- 2. Kumar, S., M. Newman, D. M. Lawrence, M. Lo, S. Akula, C. Lan, B. Livneh, and D. Lombardozzi, The GLACE-Hydrology Experiment: Effects of Land-Atmosphere Coupling on Soil Moisture Variability and Predictability. *J. Climate*, doi: <u>https://doi.org/10.1175/JCLI-D-19-0598.1</u>.
- 3. Duan, Y., and S. Kumar, Predictability of Seasonal Streamflow and Soil Moisture in National Water Model and a Humid Alabama-Coosa-Tallapoosa River Basin. *J. Hydrometeor.*, doi: <u>https://doi.org/10.1175/JHM-D-19-0206.1</u>.
- 4. Lee, W., and S. Kumar, 2016: Software-Defined Storage-Based Data Infrastructure Supportive of Hydroclimatology Simulation Containers: A Survey. *Data Science and Engineering* 1, no. 2: 65-72.