

Can we directly estimate ECS using reconstructions of the LGM?

Jiang Zhu (Paleo & Polar Climate Section)

Collaborator: Chris Poulsen (U of Michigan)

June 17, 2020

This material is based upon work supported by the National Center for Atmospheric Research, which is a major facility sponsored by the National Science Foundation under Cooperative Agreement No. 1852977.

- Equilibrium climate sensitivity (ECS): global surface temperature response (Δ T) to 2×CO2 (F_{2CO2}) after accounting for **fast feedback processes**
- Paleoclimate constraints can be used to inform ECS
 - Real-world data with large forcing/response, e.g. Cenozoic CO₂ (190-1500) & GMST [8-30°C]
 - Paleo-temperatures integrate effects across **fast and slow timescales**
- o The PALAEOSENS approach (Rohling et al., 2012, Nature)
 - Slow processes are treated as forcings and independent from fast feedbacks

$$ECS = \frac{\Delta T}{F_{GHG} + F_{LIS} + \dots} \times F_{2CO2}$$

The LGM application: requirements/assumptions

$$ECS = \frac{\Delta T}{F_{GHG} + F_{LIS} + \dots} \times F_{2CO2}$$

1. LGM cooling (ΔT): 3-8°C (IPCC AR5); 6.1±0.4°C (Tierney, Zhu, et al., *Nature, accepted*)

2. <u>Knowledge of forcings</u>

- Non-GHG forcings are challenging to quantify, e.g. LIS
- Different forcing agents have the same efficiency in change ΔT .

3. Fast feedbacks are independent on slow processes

This study examines items 2&3 in a "perfect-model scenario" in CESM1.2

- Radiative pathways
 - SW albedo over ice / new land
 - LW emission at higher elevation & colder T
- Non-radiative pathways
 - Dynamical wind shifts
 - "Surface" defined at different elevation

→ <u>Solution</u>: effective radiative forcing/efficacy

$$ECS = \frac{\Delta T}{\boldsymbol{\varepsilon}_{GHG} \times ERF_{GHG} + \boldsymbol{\varepsilon}_{LIS} \times ERF_{LIS} + \cdots} \times F_{2}CO2$$

• Fixed-SST simulation: **ATM_LIS** (CESM1.2-CAM5 + PI SST + LGM LIS; 30 yrs)

• ΔR_{TOA} : ERF_{fsst} = -1.9±0.2 W m⁻²

For more on the adjusted framework: see Sherwood et al. (2015)

Correction of ERF_{fsst} & efficacy of forcing

 $\circ \ ERF = ERF_{\rm fsst} - \Delta T_{\rm fsst} \ / \ \lambda$

• **SOM_LIS** (CESM1.2 + SOM with PI "qflux" + LGM LIS; 60 yrs)

•
$$\lambda = \frac{\Delta T_{\text{SST_mediated}}}{ERF_{\text{fsst}}} = \frac{\Delta T_{\text{SOM}} - \Delta T_{\text{fsst}}}{ERF_{\text{fsst}}}$$

$$\circ \ \varepsilon_{\text{LIS}} = \frac{(\frac{\Delta T_{\text{SOM}}}{ERF})_{\text{LIS}}}{(\frac{\Delta T_{\text{SOM}}}{ERF})_{2\text{CO2}}}$$

- With ATM_2CO2 & SOM_2CO2
- Similarly, ATM_GHG & SOM_GHG

Results: ERF and efficacy

 $◦ ERF_{LIS} = -3.2 \pm 0.2 Wm^{-2}$, $ε_{LIS} = 1.1$ $◦ ERF_{GHG} = -2.8 \pm 0.3 Wm^{-2}$, $ε_{GHG} = 0.9$

• With 6 simulations (270 years)

- a complete quantification of forcing/efficacy of GHG and LIS
- consistent with the concept of ECS and requirements of forcing-feedback framework ($\Delta R_{TOA} \sim \Delta T$)

Low ε_{GHG} (0.9) attributed to the cloud-phase feedback

Exp.	ERF_{λ}	λ_{Planck}	λ_{Alb}	λ_{WV^+LR}	λ_{CLD_LW}	λ_{CLD_SW}
SOM_2CO2	+3.9	-3.57	0.42	1.51	0.13	0.33
SOM_GHG	-2.8	-3.52	0.41	1.52	0.13	0.19

Pendergrass et al. (2018) kernels are used.

- High-latitude cloud-phase feedback
 - Mitchell, Senior, & Ingram, 1989
 - Tan, Storelvmo, & Zelinka, 2016
 - Frey & Kay, 2018
 - ...

High ε_{LIS} (1.1) linked to adjustments, coupled and cloud feedbacks

Direct ECS calculation in "a perfect model"

 \circ "Truth" in $\Delta T = -6.8$ °C

- FCM_LGM: CESM1.2 + LGM GHG & LIS
- Close to equilibrium ($R_{TOA} < 0.06 \text{ Wm}^{-2}$)
- "Truth" in ECS = 3.6°C
 - ΔT (SOM_2CO2 SOM_PI)

The missing piece: ocean dynamical effect (-1.5°C)

Slow ocean dynamics amplify LGM cooling through impacting fast feedbacks.

11

Direct calculation of ECS in a "perfect model"

- Paleoclimates contain invaluable real-world data, but climate models are needed:
 - To provide a complete quantification of forcing/efficacy
 - To explore the state dependence of fast feedbacks, e.g. the interactions with slow ocean dynamics.

Thank you for your attention!

jiangzhu@ucar.edu

Experiment	GHG	ICE	Length (yrs)	GMST / ∆GMST (°C)	ERF _{fsst} (W m ⁻²)	$\begin{array}{c} ERF_{\lambda} \\ (W \ m^{-2}) \end{array}$	ERF _{kernel} (W m ⁻²)	3
FCM_PI	PI	PI	900+	15.1				
FCM_LGM	21ka	21ka	900+	-6.8				
ATM_PI	PI	PI	30	14.9±0.03				
ATM_2CO2	2×PI	PI	30	$+0.3\pm0.05$	3.7±0.3	$+3.9\pm0.3$	+4.0	
ATM_GHG	21ka	PI	30	-0.2 ± 0.04	-2.6±0.2	-2.8 ± 0.3	-2.8	
ATM_LIS	PI	21ka	30	-1.3 ± 0.03	-1.9±0.2	-3.2 ± 0.2		
ATM_LGM	21ka	21ka	30	-1.5 ± 0.05	-4.4±0.3	-6.1±0.3		
SOM_PI	PI	PI	60	14.9±0.06				
SOM_2CO2	2×PI	PI	60	+3.6±0.06				1.00
SOM_GHG	21ka	PI	60	-2.2±0.11				0.9±0.1
SOM_LIS	PI	21ka	60	-3.2 ± 0.09				1.1±0.1
SOM_LGM	21ka	21ka	60	-5.3 ± 0.09				0.9±0.1

The missing physics—ocean dynamics

The missing piece: ocean dynamical effects $(-1.5^{\circ}C)$

-10 -8

-6

-2

0

2

8

10

11

 ΔT in SOM (–5.3°C)

-3

-4

-2

-1

0

-20 -15 -10 -5

 ΔT in FCM (-6.8°C)

Slow ocean dynamical changes regulate LGM cooling through interactions with fast feedbacks.

1