

Land Ice Working Group Summary

William Lipscomb, Jan Lenaerts and LIWG members

25th Annual CESM Workshop

June 15, 2020

This material is based upon work supported by the National Center for Atmospheric Research, which is a major facility sponsor ed by the National Science Foundation under Cooperative Agreement No. 1852977.

Outline

- LIWG research highlights
 - Improved ice-sheet climate in CESM2
 - Contributions to the Ice Sheet Model Intercomparison Project for CMIP6 (ISMIP6)
- Current and future work

Present-day Greenland surface mass balance in CESM2

Van Kampenhout et al. (JGR-Earth Surface, 2019)

Right: Greenland Ice Sheet surface mass balance (SMB) in historical period from CESM2 and the RACMO2 regional model.

Below right: GrIS-integrated surface fluxes, 1850–2014.

NCAR

- Simulation of Greenland Ice Sheet climate and SMB in CESM2 compares well to reanalyses and RACMO2.
- GrIS-integrated melt, runoff and refreezing in CESM2 are bracketed by RACMO2 values at 11 and 1 km.
- There is a break point in SMB at 1993 \pm 8, driven by increased melt and runoff.

Lenaerts et al. (JGR-Atmospheres, 2020)

 The transition from CAM5 to CAM6 has a substantial impact on Greenland surface climate.
 CAM6 performs better compared to observations.

Right: Liquid cloud frequency at 72.5°N in observations, CAM5 and CAM6

Below: Summer 2m temperature in CAM5, CAM6

CAM5 CAM6

CESM2 for dynamical downscaling on Greenland

Noël et al. (The Cryosphere, 2020)

- The RACMO2 regional climate model, with boundary forcing from CESM2, provides a realistic mean state of the Greenland Ice Sheet climate and captures the recent increase in meltwater runoff.
- First use of climate forcing from a global ESM, without corrections, to reconstruct historical Greenland surface mass balance.

Left: Greenland SMB, 1950–2014, from RACMO2 (11-km) with lateral forcing from CESM2 (1°).

NCAR Land Ice Working Group Summary

LIWG contributions to ISMIP6

The Ice Sheet Model Intercomparison Project for CMIP6 (ISMIP6) is the first CMIP component focused on ice sheets.

- *Estimate past and future sea level contributions* from the Greenland and Antarctic ice sheets, with associated uncertainty.
 - Standalone ice sheet experiments with forcing from CMIP global models
- Investigate feedbacks due to dynamic coupling between ice sheet and climate models, and impacts of ice sheets on the Earth system.

NCAR

• Coupled ESMs with evolving ice sheets

Community Ice Sheet Model (CISM):

 57 Greenland Ice Sheet simulations and 75 Antarctic simulations for many CMIP5/CMIP6 forcing scenarios

CESM–CISM with an interactive Greenland Ice Sheet:

- Spin-up, 9000 ice sheet years
 (Lofverstrom et al., JAMES, in review)
- Pre-industrial
- Transient CO2, 1%/yr to quadrupling (Muntjewerf et al., JAMES, in review)
- *ssp5-85*, 2015–2100 (Muntjewerf et al., GRL, 2020)

Greenland (Goelzer et al., TC, 2020)

- Submissions from 13 modeling groups
- RCP8.5: Sea level rise of $89 \pm 51 \text{ mm}$ by 2100 from Greenland mass loss, mainly from increased melting and runoff

Antarctica (Seroussi et al., TC, 2020)

- Submissions from 15 modeling groups
- Mass gain in E. Antarctica from increased snowfall
- Mass loss in W. Antarctica from retreat of marine-based ice; large differences among models

Lipscomb et al. (TC, in review):

CISM Antarctic experiments to test sensitivity to ocean forcing and melt schemes

- Ocean warming by 2100 is sufficient to drive long-term retreat in the Ross, Filchner-Ronne and Amundsen Sea basins of the West Antarctic Ice Sheet.
- The Antarctic sea level contribution over 500 years varies from ~10 cm to 2 m depending on the sub-ice-shelf melt scheme and the ESM ocean forcing.

Left: Surface ice speed from a 20,000-yr CISM Antarctic spin-up with climatological ocean forcing.

Right: Ice thickness difference at the end of a 500-year projection with 21st century NorESM ocean forcing and a high-sensitivity sub-ice-shelf melt scheme.

Greenland Ice Sheet contribution to sea level rise, CESM-CISM

Muntjewerf et al. (GRL, 2020):

- 5.4 K global mean temperature increase and strong NAMOC weakening (similar to CESM-only simulations) by 2100 in SSP5-8.5 w.r.t. preindustrial.
- Mass loss from the Greenland Ice Sheet accelerates after mid-century. The total sea level rise contribution is 23 mm by 2050, **109 mm by 2100.**
- The relative sea-level contribution of northern basins increases after mid-century.

Climate and ice sheet trends, 1850-2100. (a) Atmospheric CO₂, (b) Global 2m temperature and Atlantic meridional overturning, (c) GrIS-sourced global mean sea-level rise, (d) GrIS SMB and mass balance.

Model development

- Support an interactive Antarctic ice sheet in coupled CESM-CISM simulations
 - For now, POP geometry is fixed
 - Later, MOM6 geometry would evolve
- CISM physics improvements
 - Transient subglacial hydrology (SHAKTI, Sommers et al. 2018)
 - Reduced-order ocean model to represent sub-ice-shelf circulation and melting
 - Improved calving model

NCAR

Coupled simulations

- Additional ISMIP6 runs (ssp5-85 extension, ssp2-45)
- Work with the Paleoclimate WG on new simulations of the Last Interglacial (including Antarctica), glacial inception, Last Glacier Maximum, and last deglaciation.
- Run the first CESM-CISM simulations with a dynamic Antarctic ice sheet.
- Explore variable-resolution grids to reduce precip and melting biases.

Glacial inception

Surface topography on the 4-km extended CISM grid, CESM-CISM simulation with 116 ka forcing. **Gray** = initial Greenland Ice Sheet **Red** = areas covered by glacial ice after 650 years

NCAR

Lofverstrom et al. (in prep):

Simulations of Northern Hemisphere glacial inception in CESM-CISM

- Orbital and greenhouse-gas forcing for 116 ka (low NH summer insolation)
- After 650 model years, there is glacial ice in the regions where inception actually occurred.
- Total ice volume = 12 m sea level equivalent (consistent with proxy data)
- Inception in Scandinavia only after Canadian gateways closed
- Probably too much ice in E. Siberia (common ESM bias)

Land Ice Working Group Summary

Goal: Conduct a fully coupled CESM-CISM simulation of Northern Hemisphere climate and ice sheets at 21 ka BP

- 1) Generate paleo-vegetation data set and spun-up snowpack.
- 2) First results from CESM: climatology.
- 3) Response of N. Hemisphere ice sheets to the LGM SMB

Climatological mean surface temperature, 21 ka BP

NCAR

Northern Hemisphere ice sheets at the Last Glacial Maximum on the 4-km extended CISM grid

Courtesy of Sarah Bradley and Michele Petrini

Land Ice Working Group Summary

Variable - resolution grids

Historical runs completed with new Arctic grids in CESM2.2 (CAM-SE)

Testing the ability of VR-CESM to simulate cryospheric-hydrological variables in High Mountain Asia

1/8° grid (**ARCTICGRIS**) captures narrow ablation zones AND orographic precipitation associated with steep ice sheet margins.

Collaborators: Herrington & Gettelman (AMWG), Lipscomb & Leguy (LIWG), Lofverstrom (U. Arizona), Noël (Utrecht) Can 1/16° refinement simulate the surface mass balance of HMA glaciers? Testing 4 grids for stability and performance.

Collaborators: Wijngaard (Yonsei), Herrington (AMWG), Lipscomb & Leguy (LIWG)

Contact aherring@ucar.edu for data availability

Click to add footer

NCAR

Thank you!

For more information:

Web page: http://www.cesm.ucar.edu/working_groups/Land+Ice/

Co-chairs:

Jan Lenaerts, CU Boulder, jan.lenaerts@colorado.edu

William Lipscomb, NCAR CGD, lipscomb@ucar.edu

Liaisons:

Gunter Leguy, NCAR CGD, gunterl@ucar.edu

Kate Thayer-Calder, NCAR CGD, <u>katec@ucar.edu</u>