

南京信息工程大学

Nanjing University of Information Science & Technology

Fast Climate Responses to Aerosol Emission Reductions During the COVID-19 Pandemic

Yang Yang

School of Environmental Science and Engineering Nanjing University of Information Science and Technology

August 24, 2021

all the

Background

Detectable Climate Response ?

10

Experimental Design

Madel	Year	Meteorology	
CAM5	2020	Nudged to MERRA-2	

		E	Emissions Assumption					
								100%
		Stage 1		Stage 2		Stage 3		95% -
-		COVID-Lock		Back to Work		Post-Lock		
\mathbf{N}		EAS	ROW	EAS	ROW	EAS	ROW	90% -
.10	CTRL	-	-	-	-	1-12	1-12	85% -
lai	FAST	1-3	3-5	4-6	6-7	7-12	8-12	80% -
Cet	MID	1-3	3-7	4-6	8-11	7-12	12	75% -
Ň	SLOW	1-3	3-12	4-6	-	7-12	-	1 2

Emission

CMIP6 + MEIC

1.15

Changes in aerosol burden, optical depth and radiative forcing

 $\triangle \mathsf{RF}_{\mathsf{ari}}$

△ Aerosol Burden

 $\triangle AOD$

 $riangle \mathsf{RF}_\mathsf{aci}$

90°N

60°N

30°N

30°S

60°S

90°S

90°N

60°N

30°N

0°

30°S

60°S

90°S

60°N

30°N

0°

30°S

60°S

90°S

180°

-2.0

180°

0°

-0.2 0.2

 $\Delta \text{ RF}_{\text{aci}} (\text{W/m}^2)$

60°E

120°E

60°E 120°E 180°

1.0 2.0

0.5

180

60°W

120°W 60°W

-1.0

-0.5

Surface warming in response to aerosol reductions

- Temperature responses are strong at regional scale.
- Surface warming appears primarily over land of the Northern Hemisphere with a zonal mean temperature increase of 0.04–0.07 K between 30°N and 50°N.
- ◆ A longer duration of global emission reductions would produce a warmer climate

Yang Y. et al., GRL (2020)

100

Regional surface warming during the COVID-Lock

- \succ
- South Asia in March–May.

During the COVID-Lock in January–March, eastern China is warmer than usual by 0.05–0.15 K.

> Surface air temperature is higher than normal by 0.04–0.07 K in eastern United States, Europe and

Observed warming was explained by COVID aerosol reduction

temperature increases of 10-40% over eastern

Southward shift of ITCZ due to aerosol reductions

 Δ Precipitation Rate (mm/day)

All emission reduction simulations exhibit an obvious southward shift of the ITCZ.

◆ It results from the hemispheric asymmetry in BC-induced instantaneous atmospheric heating that changes the cross-equatorial heat transport and, consequently, causes a fast precipitation response.

Yang Y. et al., GRL (2020)

16

Record-breaking flooding in China during summer 2020

Human Influence? **COVID-19?**

Natural Variability ?

Yang, Ren et al. Submitted

- An anomalous surface warming appears over the Northern Hemisphere continents in response to aerosol reductions during COVID-19.
- The COVID-19 emission reduction explains the observed 2019-to-2020 temperature increase by 10–40% over eastern China.
- A longer duration of global emission reductions would produce a warmer climate.

Citation: Yang, Y., Ren, L., Li, H., Wang, H., Wang, P., Chen, L., Yue, X., and Hong, L., Fast climate responses to aerosol emission reductions during the COVID-19 pandemic, Geophys. Res. Lett., 47, e2020GL089788, doi:10.1029/2020GL089788, 2020.

Thank You

yang.yang@nuist.edu.cn

