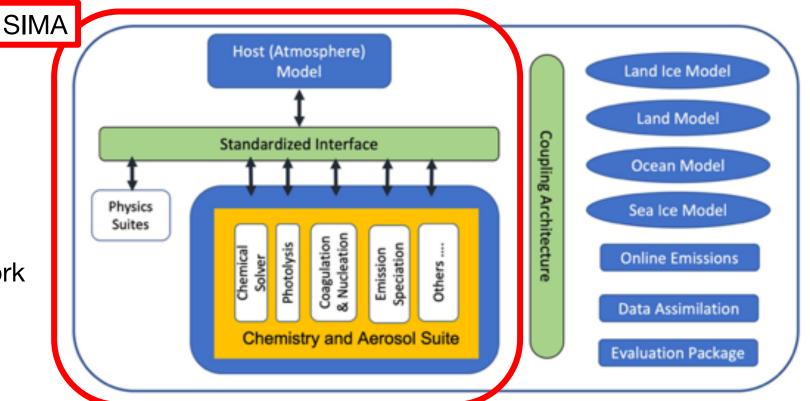
Regional simulations of chemistry within MUSICA and new chemical model developments

Presenting Author: Forrest Lacey¹, <u>lacey@ucar.edu</u>, @LaceyResearch

June 15, 2021

Coauthors:

Rebecca Schwantes², Louisa K. Emmons¹, Simone Tilmes¹, Peter Lauritzen¹, Patrick Callaghan¹, Mary Barth¹, Francis Vitt¹, Andrew Conley¹, Gabriele Pfister¹ *National Center for Atmospheric Research, Boulder, CO, USA NOAA/CSL-CIRES/U, Colorado*

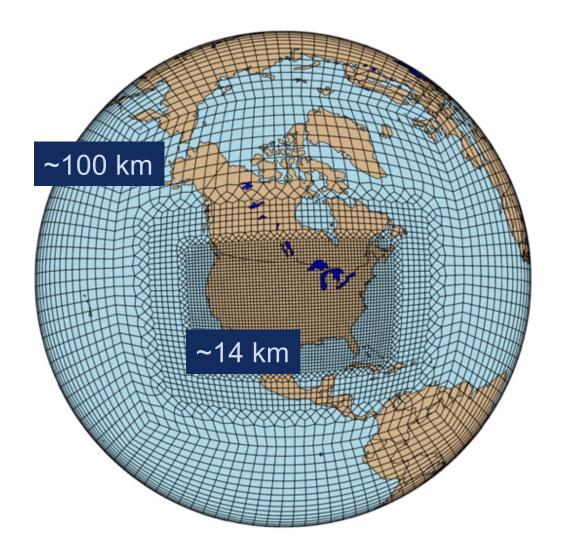

MUSICA Multiscale Infrastructure for Chemistry and Aerosols

MUSICA: MUlti-Scale Infrastructure for Chemistry & Aerosols

A new model-independent infrastructure, which will enable chemistry and aerosols to be simulated at different resolutions in a coherent fashion

Goal to develop model configurations based on a user's individual science question / familiarity (e.g., CAM, WACCM, chemical transport model)

Development of the framework is underway in many labs at NCAR and within our community partners



https://www2.acom.ucar.edu/sections/multi-scale-chemistry-modeling-musica

MUSICA Vision paper published in BAMS (Pfister et al., 2020: https://doi.org/10.1175/BAMS-D-19-0331.1)

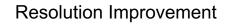
MUSICA.v0 - released in CESM2.2

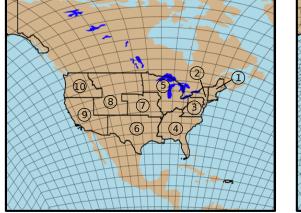
NCAR

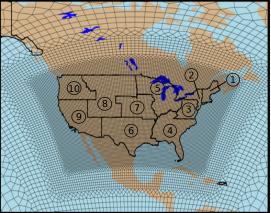
 MUSICA.v0 is a configuration of the Community Earth System Model (CESM):
 CAM-chem (Community Atmosphere Model with Chemistry)
 With Spectral Element (SE) dynamical core and Regional Refinement (RR) CAM-chem-SE-RR

- At finer resolution, emissions and chemistry are more accurately represented
- Pollutants are simulated on human exposure-relevant scales

Global feedbacks are directly included Most of the grid points are in refined region, so no additional cost to simulate the whole globe


Model Setup: MUSICA Framework


MUSICAvo


MUSICA.v0 allows for modeling of the formation and fate of trace pollutants at different resolutions and using various chemical mechanisms

Horizontal Scale:

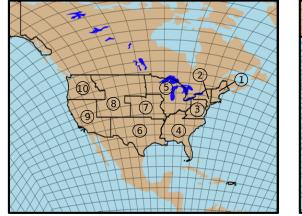
- Global 1° degree cubed-sphere
- Global 1° with 1/8° degree over CONUS

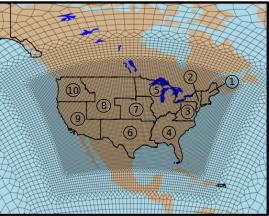
Lacey et al., in prep

Model Setup: MUSICA Framework

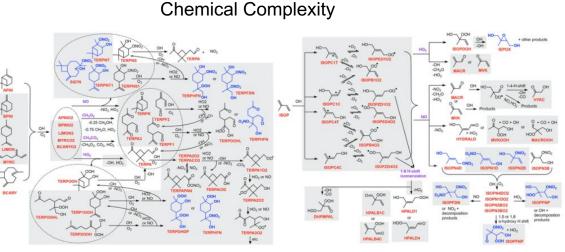
MUSICAvo

MUSICA.v0 allows for modeling of the formation and fate of trace pollutants at different resolutions and using various chemical mechanisms


Horizontal Scale:


- Global 1° degree cubed-sphere
- Global 1° with 1/8° degree over CONUS

Chemical Complexity:


- MOZART TS1 151 species
- MOZART TS2 237 species (improved isoprene and terpene chemistry, Schwantes et al., 2020)

Resolution Improvement

Lacey et al., in prep

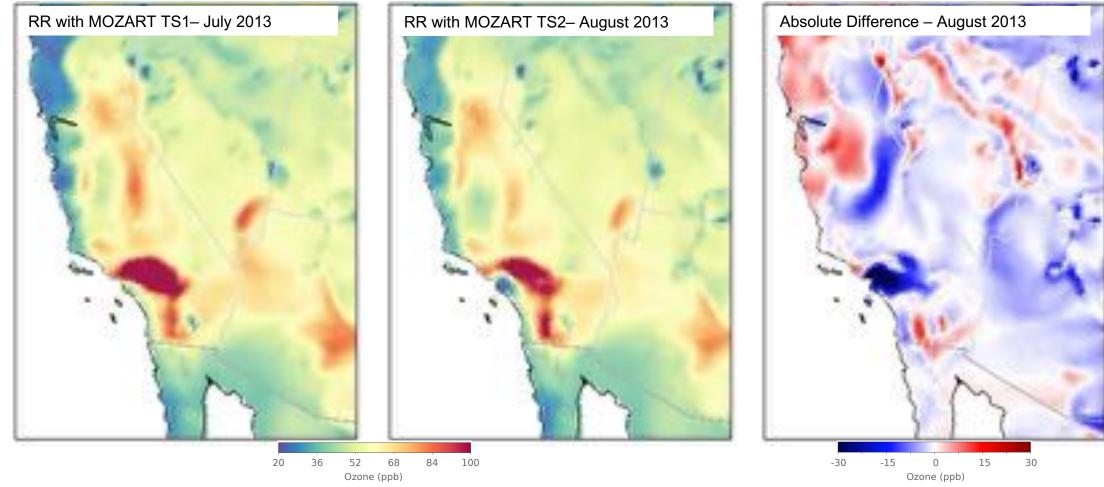
Schwantes et al., 2020 ACP

Results: MUSICA.v0 – Resolution Significance

Wildfires and other localized sources are becoming increasingly important w.r.t. ambient air quality

Resolution has a large impact on estimates of surface PM_{2.5} as seen from the Rim Fire in 2013 Lacey et al., in prep 1 Degree Model – August 2013 Absolute Difference – August 2013 Regional Refinement – August 2013 50 -12 12 24 0 10 20 30 40 -24 0 PM_{2.5} (µg m⁻³) PM_{2.5} (µg m⁻³)

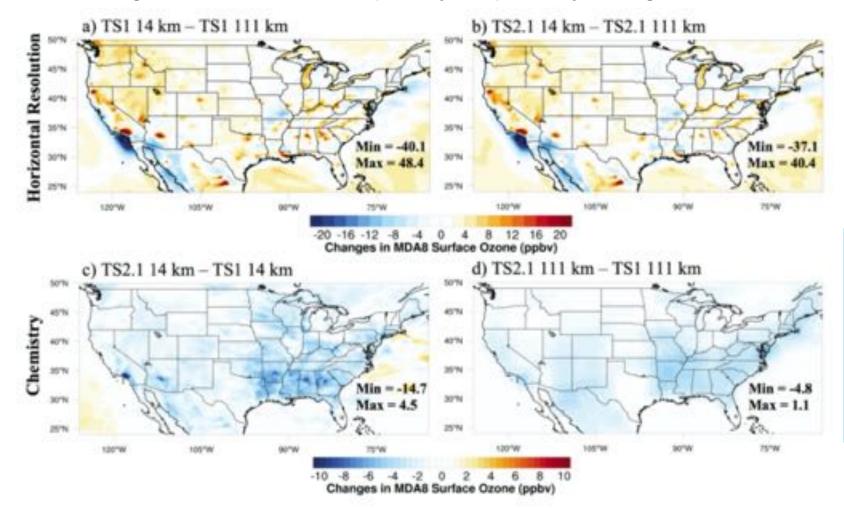
MUSICAvo



Results: MUSICA.v0 – Impacts of Chemical Mechanism

The MOZART TS2 mechanism provides improvements in oxidation of isoprene and monoterpenes as well as adding high-NOx pathways for several other species

MUSICAv0


We can see some of these changes over California that has a mix of anthropogenic and biogenic emission sources and as the outflow from Los Angeles and other cities Lacey et al., *in prep*

Results: MUSICA.v0 – Impacts on Pollutant Concentrations

In general, the results show that the changes due to shifts in resolution are similar in magnitude to the changes in chemical complexity, especially at higher resolution.

Model description and evaluation papers in prep. by Becky Schwantes and Forrest Lacey Online tutorial is being developed: <u>https://www2.acom.ucar.edu/workshop/mu</u> <u>sica-tutorial-2020</u>

MUSICAvo

Results: MUSICA.v0 – Impacts on Pollutant Concentrations

In general, the results show that the changes due to shifts in resolution are similar in magnitude to the changes in chemical complexity, especially at higher resolution.

017

40.31

0.23

41

odel PM15 bias w.r.t. EPA AQS observations

-0.0072

0.092

0.14

0.33

odel PM25 bias wirit EPA AQS observations

0.028

0.53

0.3

-0.82

-0.84

1.2

-0.15

0.67

29

0.26

0.033

857

0.71

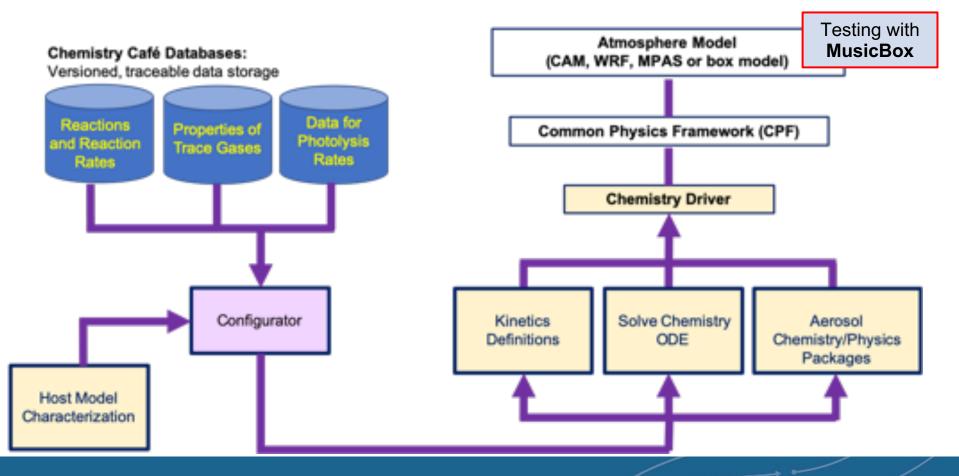
	Report -	Region 2 -	Repon 3 -	Report 4 -	Region 5 -	Repton 6 -	Region 7 -	Report 8 -	Region 9 -	Report 10 -		Repion 1 -	legion)-	Repion 4 -	Region 5 -
NOS .	0.57	0.44	0.71	0.78	1	0.66	0.67	4.33	0.88	0.68	NOS	0.55	49	3.6	-0.077
z.	1.8	18	22	18	15	-0.44	2	0.65	13	0.78	1	23	3.8	49	3.5
WWW	-0.23	-0.075	0.15	0.5	-0.35	-0.26	4.12	4.62	0.17	-0.45	NWN	0.13	4.33	-23	0.071
8.	-0.33	-0.22	-0.083	0.051	-0.12	-0.23	0.12	-1.1	0.14	-0.82	8	11	0.93	-0.64	13
		Chemis	try drives	n shifts in	model 0) ₃ bias w.	rt EPA A	QS obser	vations		3	Che	mistry dr	iven shift	s in moi
	Region 1 -	Region 2 .	Region 3.	Repon 4 -	Report 5 -	Report 6 -	Region 7 .	Region 8 -	Report 9 -	Repion 10 -		Report -	Region 3	Repon 4 .	Region 5 -
100	1.4	3	0.072	-0.093	-0.49	1.2	013	-1.8	0.28	12	NOS	.0.44	0.23	014	0.39
4	2.1	4	-1.2	-0.7	-4.9	0.42	-0.62	- 12	22	4.27	4	15	41	48	0.67
NWN .	0.93	16	0.25	0.29	13	0.35	0.81	4.82	17	0.91	NWN	0.45	0.4	0.44	0.38
8.	0.54	14	0.16	24	0.39	15	0.022	0.44	21	0.089	8.	0.28	0.7	0.25	0.42
		Resolut	son drive	n shifts in	model 0	3 bias w	r.t. EPA A	Q5 obser	vations			Reso	lution de	iven shift	s in mo

Shifts in ozone bias (ppb)

Shifts in PM_{2.5} bias (µg m⁻³)

Regional and seasonal analysis also highlights potential areas for model improvement

MUSICAvo


Model description and evaluation papers in prep. by Becky Schwantes and Forrest Lacey Online tutorial is being developed: <u>https://www2.acom.ucar.edu/workshop/mu</u> <u>sica-tutorial-2020</u>

NCAR | UCAR |

Model-Independent Chemistry Module (MICM)

Will allow use of the same chemistry in different atmosphere models and offline meteorology (CTM) Also allows easily changing the chemical mechanism

A box model using MICM is being developed: **MusicBox**

Atmospheric Chemistry Observations and Modeling Laboratory

NCAR

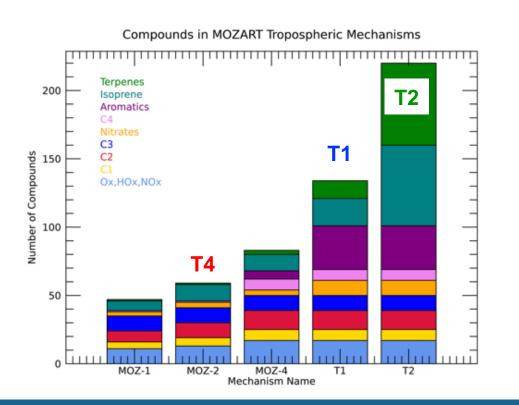
UCAR

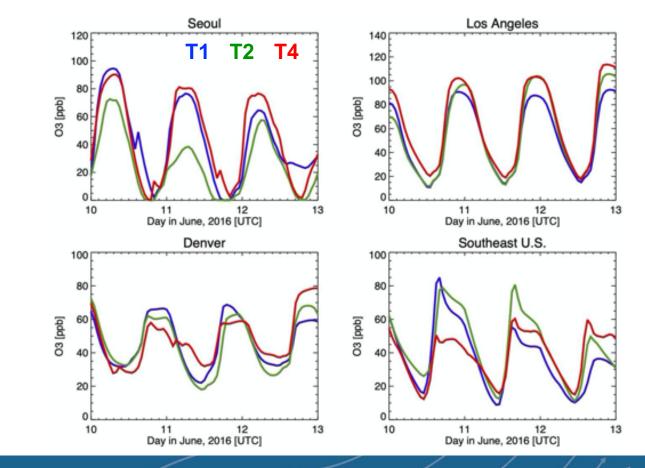
MusicBox: MICM in a Box Model

MUSICA

Model Options Species Initial Conditions Evolving Conditions Photolysis Review									
Upload File (.txt, .csv):		 Load a mechanism file Modify mechanism (species, reactions, etc.) 							
File: Choose File No file	e chosen								
Chemical Species:		 Add information about species (e.g., Henry's 							
Formula	Int	Law constants), document reactions							
02	1.0	(references)							
N2	2.0	 Set model conditions (initial, time-varying) 							
03	3.0	Run box model							
H2O	4.0	 Plot model results (compare 2 mechanisms) 							
Save		· · · · · · · · · · · · · · · · · · ·							
Add New Species		 Download results 							
	File: Choose File No file Chemical Species: Formula 02 N2 03 H20 Save	File: Choose File No file chosen Chemical Species: Formula Int O2 10 N2 2.0 O3 3.0 H2O 4.0 Save							

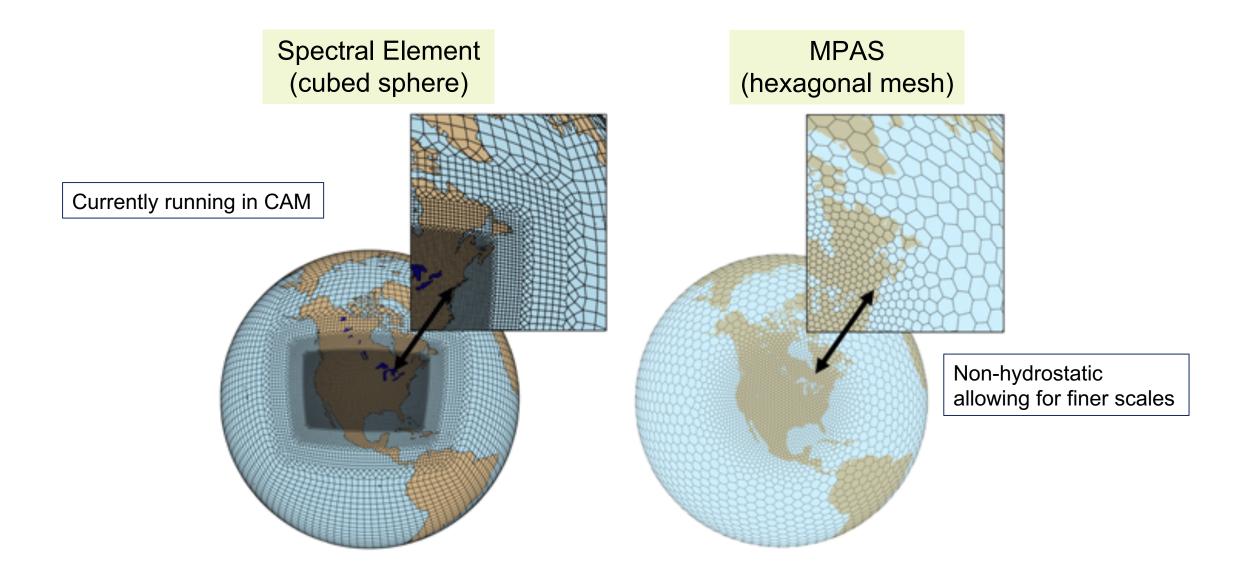
Community use & development welcome: https://wiki.ucar.edu/display/MusicBox/, https://github.com/NCAR/MusicBox




Applications for MusicBox

Evaluate and compare chemical mechanisms

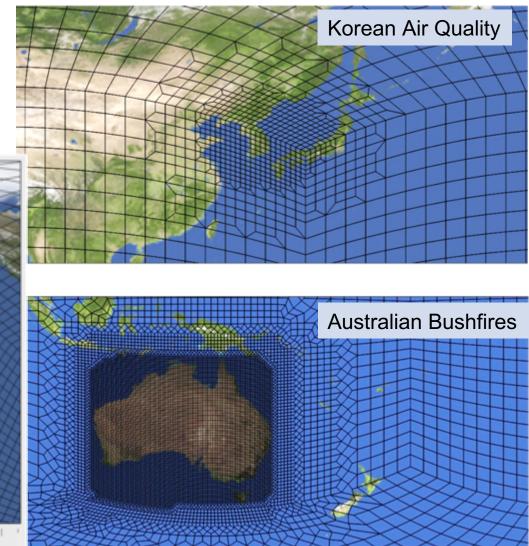
- Different complexity (MOZART-T1, -T2 and MOZART-2)
- Different origin (SAPRC, GEOS-Chem, CB)
- -> Community input welcome!

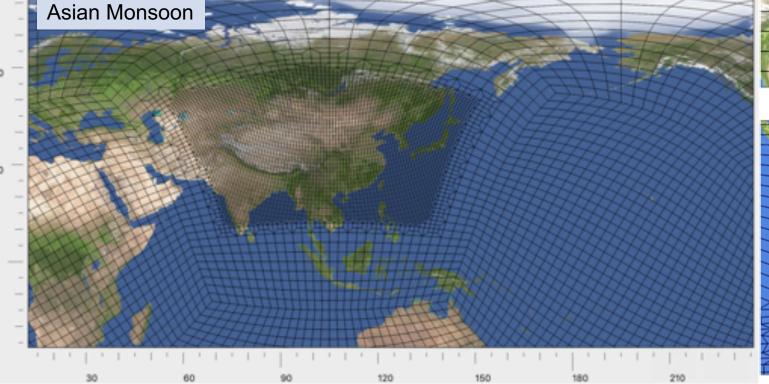

Comparison of MOZART mechanisms of different complexity [*results from CAM-chem*]

NCAR UCAR

Ongoing Development: MUSICA.v0

Atmospheric Chemistry Observations and Modeling Laboratory


NCAR


UCAR

Ongoing Development: MUSICA.v0

Tools released with CESM allow users to create grids with arbitrary refined regions for use in MUSICA-V0

https://wiki.ucar.edu/display/MUSICA/Generating+variable+resolution+grids

Atmospheric Chemistry Observations and Modeling Laboratory

NCAR

UCAR

Conclusions

- MUSICA and SIMA allow for the simplified evaluation of model complexity impacts on atmospheric state within a single framework
- Initial experiments show that both horizontal scale and chemical complexity are of equal importance for estimating non-linear species such as ozone and PM2.5
- MICM and MusicBox are tools that can be used to aid in answering some of these questions before implementation into a 3D model
- Community support is present and needed to continue development of MUSICA based on the various model components that are all involved

MUSICA Multiscale Infrastructure for Chemistry and Aerosols

Community Involvement Welcome

We invite the community to participate in development, evaluation and application of MUSICA: https://www2.acom.ucar.edu/sections/multi-scale-chemistry-modeling-musica

Working groups:

- Model Architecture
- Emissions and Deposition
- Chemical Schemes
- Aerosols

NCAR

- Physics, Transport, sub-scale Processes
- Whole Atmosphere
- Evaluation and Data Assimilation

Visit MUSICA website to join working groups Implementation plans are being developed