

BGCWG Highlights

THE 27th ANNUAL CESM WORKSHOP

WG Co-Chairs: Gretchen Keppel-Aleks (Univ. Michigan) Matthew Long (NCAR/CGD) Abigail Swann (Univ. Washington)

NCAR

13 JUNE 2022

Understanding lags and symmetries of the Earth system response to CDR using an idealized emissions-driven CO₂ reversal experiment

Koven et al., *in prep.* Contact Charlie Koven <u>cdkoven@lbl.gov</u> if interested in CESM2 output

CESM1 Large Ensemble without Mt. Pinatubo Eruption: Global mean impact

Contact Matt Long if interested in output: mclong@ucar.edu

Courtesy of Amanda Fay (Columbia)

Spread in global mean surface temp due to range of 9 plant parameters = ~1/3 spread across all CMIP5 models

Leveraging the perturbed parameter work from Daniel Kennedy et al. to choose parameters that impact the atmosphere

Preindustrial runs w/ CAM-CLM-slab ocean

9 plant parameters run at high and low values compared to default value

Slowdown of Ocean Deoxygenation by Aerosols during the 20th Century

Eddebbar, in Prep

1. CESM Single Forcing LENS shows aerosols lead to substantial (50%) slowdown of ocean deoxygenation over 20th Century

2. Uptake of oceanic O₂ due to aerosols tied to aerosol spatial evolution (dominated by Pacific); driven by solubility effects and changes in circulation

Seasonal to multi-year prediction: GPP

Yeager et al. (2022)

See https://doi.org/10.5194/gmd-2022-60

Seasonal to multi-year prediction: Marine NPP, Export, Zooplankton

Yeager et al. (2022)

See https://doi.org/10.5194/gmd-2022-60

New Hindcast CESM Hi Pos Pup:

- CESM2 0.1° (POP
- JRA-55 Reanalysis

Seasonal Modulation of Eq. Pacific O₂ by Tropical Instability Vortices (TIVs)

 CORE-forced CESM 0.1° 5-year simulation shows TIVs have major influence on tropical Pacific O₂ balance and seasonal variability through eddy advection and modulation of vertical mixing along equatorial Pacific

Courtesy of Y. Eddebbar (Scripps)

MARBL: The Marine Biogeochemical Library

JAMES Journal of Advances in Modeling Earth Systems*

Simulations With the Marine Biogeochemistry Library (MARBL)

Matthew C. Long¹, J. Keith Moore², Keith Lindsay¹, Michael Levy¹, Scott C. Doney³, Jessica Y. Luo^{1,4}, Kristen M. Krumhardt¹, Robert T. Letscher⁵, Maxwell Grover¹, and Zephyr T. Sylvester⁶

Implementations

CESM (POP2 & MOM6)

ROMS (under development)

Modular ocean biogeochemistry model

Long, Moore, Lindsay, et al., JAMES (2021)

CESM-BEC: Now with Fully Variable Stoichiometry!

Phytoplankton nutrient uptake parameterized as follows:

X = N, P, Fe, or Si

- gQx_max: Maximum X:C
- XOpt: Optimal X for
- gQx_min: Minimum X:C
- [X]: Nutrient concentration

Allows for variable C:N:P:Fe:Si

P Quotas: When nitrate is low, N and P uptake are both reduced in order to maintain N/P uptake appropriate for ambient phosphate levels

Si Quotas: When [Si] \downarrow , Si:C \downarrow

[Si] replete, [Fe] \downarrow , Si:C \uparrow

Courtesy N. Wiseman (UCI)

Current BEC Setup, porting to MARBL (3p1z) this summer

	Diatoms	Small Phyto	Diazotrophs
C:N	6-9	6-9	6-7
N:P	15-25	90-180	120-315
C:P	90-225	90-180	120-315
Fe:C	3-90	3-90	6-180
Si:N	0.33-5		

C:N:P ranges constrained by GO-SHIP POM observations (Tanioka et al., in review)

N:P by inverse model estimates (Wang et al. 2019)

Fe:C range constrained by observations from Ben Twining and others (Wiseman et al., submitted to GBC)

Another Flying Leap*: Building toward fully prognostic fish

ATMOSA

NOAA

ARTMENT OF C

FEISTY Total Fish Biomass Simulations

Annual mean of total fish biomass

Coefficient of variation (σ/μ) of total fish biomass

Petrik et al., Prog. Oceanog. (2019)

*Inez Fung

Expanding the MARBL marine ecosystem to link to a fisheries model

- Partitioning zooplankton group into microzooplankton and mesozooplankton
- Offers improved estimates of food resources for fish and other higher trophic levels
- Societally-valuable fish prediction

Courtesy of Kristen Krumhardt

Expanding the MARBL marine ecosystem to link to a fisheries model

Thanks!

BGCWG Co-Chairs:

Gretchen Keppel-Aleks (gkeppela@umich.edu) Matthew Long (mclong@ucar.edu) Abigail L S Swann (aswann@uw.edu)

