

Changing Storage: Towards dams and reservoirs in Earth System Models

Inne Vanderkelen

CESM Workshop 13th June 2022

Collaborators:

Wim Thiery, Nicole van Lipzig, Ann van Griensven, Dave Lawrence, Bill Sacks, Martyn Clark, Shervan Gharari, Yadu Pokhrel, Naoki Mizukami, Sean Swenson, Naota Hanasaki, and many more! Dam construction lead to the creation of a new open-water body, a reservoir

Since the 20th century, humans build 50 000 large dams worldwide Representing 0.2 % of global land area, and 7% of total lake area

Dams build from 1900 onwards

Humans directly interfere with the terrestrial water cycle But Earth System models barely account for this...

Pokhrel et al. 2016

Water management and land-atmosphere interactions: irrigation

Irrigation expansion (IRR-CROP)

MPI-ESM

surface temperature [K]

Thiery et al., 2017, JGR

What is the impact of reservoirs on the climate? How can we represent reservoirs in CESM?

Representing reservoirs in Earth system models Look at dam parametrizations in global hydrological models

Impact models

Detailed, specialized and process-based

Water management and catchment models Observation-based storage and release policies

Global hydrological models Generic dam parametrisations

Earth System Models Holistic, coupled framework

Community Earth System Model (CESM)

Solving processes and feedbacks of atmosphere, ocean, land, ice and biosphere

Community Terrestrial Systems Model (CTSM)

Land component, processes on terrestrial ecosystems and hydrology

MizuRoute

Global routing model, transports water to the ocean through rivers and lakes

Heat uptake by inland waters: lakes, rivers and reservoirs In addition, heat is redistributed through reservoir construction

Total inland water heat uptake is $2.57 \pm 3.23 \times 10^{20}$ J: ~ 3.6 % of land uptake

Heat redistribution by reservoir expansion: $26.8 \pm 2.1 \times 10^{20} \text{ J}$ Exceeding heat uptake by climate change by factor ~10.4

An updated lake mask for CTSM Based on HydroLAKES and GRanD

Developments implemented in source code, dataset will be available in CTSM5.2 tag

Implementation of reservoir expansion in CTSM Dynamically growing lake fraction in the grid cell

In CTSM lakes are simulated with a constant depth

Reservoir expansion as growing lake fraction in the grid cell

Correction fluxes are minimized with a baseline approach

Land only experiments: impact of transient reservoir expansion

Vanderkelen et al. 2021, JGR

Coupled experiments: influence of reservoirs on climate

AMIP-style simulations

- 1980-2014, 0.9° by 1.25°
- 5 ens members RES and NORES

Reservoirs dampen temperature extremes

- Reservoirs dampen the daily and seasonal T cycle and T extremes
- Responses localized to reservoir grid cells
- Substantial where reservoirs make up a large fraction

Streamflow regulation through dam management

Bhumibol dam, Thailand

Implement dam management in the ESM

Irrigation demand per reservoir based on new irrigation topology

mizuRoute: vector-based river routing model

Lakes and reservoirs part of river network

Mizukami et al. 2016, GMD Mizukami et al. 2021, JAMES Gharari et al., in review

Hanasaki et al. (2006) global dam parametrization

- Irrigation vs non-irrigation reservoirs
- "within-a-year" vs "muti-year" reservoirs
- · Input: purpose, mean inflow and irrigation seasonality

irrigation demand (mcm/year)

MizuRoute simulations

NOLAKES	Run-of-river as outflow
NAT	Natural lake param. of Döll et al, 2003
DAM	Dam param. of Hanasaki, 2006
DAM NOIRR	Dam param. of Hanasaki, 2006; all reservoirs non-irrig

Local simulations

- 26 Individual reservoirs
- Observed reservoir inflows
- Irrigation water demands from CLM and irrigation topology

Global simulations

- HDMA river network with lakes
- 1773 reservoirs, of which 484 irrigation
- Runoff from CTSM

Inflow and runoff biases in CONUS

- Unresolved dams upstream of river network
- · Biases in catchment runoff
 - · Water abstraction is not included in CTSM
 - Underestimation of irrigation water use upstream
 - Structural biases in snowmelt dynamics

Potential solutions

- CTSM parameter calibration for runoff (Cheng et al., in review)
- Domestic and indust. water abstraction (Taranu et al., in prep)
- Improve irrigation: different techniques (Yao et al., in review)
- Representative hillslope model (Sean Swenson)
- Use of higher resolution river network (e.g. MERIT-Hydro)

Conclusions Towards reservoirs and dams in CESM

Representation of dams and reservoirs in CESM

- Reservoir expansion in CTSM as dynamical lakes
- Dam regulation in river routing model mizuRoute

Future work

- Improvements on biases in CTSM runoff
- Coupling of mizuRoute with CTSM and CESM (ongoing)

Opening new research avenues

- Improvement the terrestrial water cycle by including human water management
- Studies on water availability, role of human water management and climate change for adaptation and mitigation strategies.

CESM Workshop 13th June 2022

Changing Storage: Towards dams and reservoirs in Earth System Models

Inne Vanderkelen

inne.vanderkelen@vub.be

Vanderkelen, I., Gharari, S., Mizukami, N., Clark, M. P., Lawrence, D. M., Swenson, S., Pokhrel, Y., Hanasaki, N., Van Griensven, A., & Thiery, W. (2022). Evaluating a reservoir parametrisation in the vector-based global routing model mizuRoute (v2.0.1) for Earth System Model coupling. *Geoscientific Model Development*, *15*(10), 4163–4192. <u>https://doi.org/10.5194/gmd-2022-16</u>

Vanderkelen, I., van Lipzig, N. P. M., Sacks, W. J., Lawrence, D. M., Clark, M. P., Mizukami, N., Pokhrel, Y., & Thiery, W. (2021). Simulating the Impact of Global Reservoir Expansion on the Present-Day Climate. *Journal of Geophysical Research: Atmospheres*, 126(16), e2020JD034485. <u>https://doi.org/10.1029/2020JD034485</u>

Vanderkelen, I., van Lipzig, N. P. M., Lawrence, D. M., ... & Thiery, W. (2020). Global Heat Uptake by Inland Waters. Geophysical Research Letters, 47(12), e2020GL087867. https://doi.org/10.1029/2020GL087867