27th Annual CESM Workshop June 13, 2022

A Decade of Decadal Prediction Research

Advancing CESM near-term prediction capabilities in the face of drift, shock, and noise

Stephen Yeager

National Center for Atmospheric Research (NCAR), Boulder, CO

Forced Variability & Change

Internal Variability

Forced Variability & Change

Internal Variability

Forced Variability & Change

Internal Variability

Which matters more for Earth system prediction: internal variability or forced climate change?

- Depends on spatiotemporal scale
- Accurate decadal prediction of regional environmental change requires constraining the internal component of variability in climate models (in addition to the forced component)
- As in NWP, constraining internal variability can be accomplished through initialization

Science, 1997

REPORTS

Predictability of North Atlantic Multidecadal Climate Variability

Stephen M. Griffies* and Kirk Bryan

Nature, 2008

Advancing decadal-scale climate prediction in the North Atlantic sector

N. S. Keenlyside¹, M. Latif¹, J. Jungclaus², L. Kornblueh² & E. Roeckner²

BAMS, 2009

DECADAL PREDICTION

Can It Be Skillful?

by Gerald A. Meehl, Lisa Goddard, James Murphy, Ronald J. Stouffer, George Boer, Gokhan Danabasoglu, Keith Dixon, Marco A. Giorgetta, Arthur M. Greene, Ed Hawkins, Gabriele Hegerl, David Karoly, Noel Keenlyside, Masahide Kimoto, Ben Kirtman, Antonio Navarra, Roger Pulwarty, Doug Smith, Detlef Stammer, and Timothy Stockdale ← Laid out the scientific rationale for a decadal prediction protocol for CMIP5

Improved Surface Temperature Prediction for the Coming Decade from a Global Climate Model

Doug M. Smith,* Stephen Cusack, Andrew W. Colman, Chris K. Folland, Glen R. Harris, James M. Murphy

J. Climate, 2010

Decadal Prediction in the Pacific Region

GERALD A. MEEHL AND AIXUE HU

National Center for Atmospheric Research,* Boulder, Colorado

CLAUDIA TEBALDI⁺

National Center for Atmospheric Research,* Boulder, Colorado, and Climate Central, Princeton, New Jersey

Decadal Prediction Experiment Design

J. Climate, 2012

 10-member CCSM4-DP initialized each Jan. 1st 1961,1966,...,2006 (N=10) from a forced ocean—sea-ice (FOSI) simulation constrained by historical atmospheric observations.

- First demonstration of decadal prediction skill of CCSM hindcasts initialized from observation-based states
- Heat budget analysis showed that skill derives from predictable ocean advective heat convergence (as had been hypothesized, but not shown)

An evaluation of experimental decadal predictions using CCSM4

A. Karspeck · S. Yeager · G. Danabasoglu · H. Teng

- Analysis of CCSM4-DP, including extra start dates and a companion set initialized from ocean data assimilation historical "snapshots".
- In the primary region where initialization impacts are large (SPNA), hindcast initialization method yields higher skill than data assimilation initialization method.

Equatorial Pacific SST

Clim. Dyn., 2014

An evaluation of experimental decadal predictions using CCSM4

A. Karspeck · S. Yeager · G. Danabasoglu · H. Teng

• Poor skill in the tropical Pacific using FOSI initialization.

CLIVAR Exchanges, 2017

Geophysical Research Letters

RESEARCH LETTER	Predicted slowdown in the rate of Atlantic sea ice loss		
10.1002/2015GL065364	Stephen G. Yeager ¹ , Alicia R. Karspeck ¹ , and Gokhan Danabasoglu ¹		
Key Points: • Ocean thermohaline circulation	¹ Climate and Global Dynamics Laboratory, National Center for Atmospheric Research, Boulder, Colorado, USA		

- 10-member CESM1-DP initialized from FOSI each Jan. 1st 1955-2014 (N=60)
- Parallel work examining N. Atlantic mechanisms in FOSI
- Predictable decadal changes in N. Atlantic ocean thermohaline circulation (THC) strength & northward heat transport (related to low-frequency NAO buoyancy forcing) translates into predictable changes in the rate of Arctic winter sea ice decline.
- Rapid sea ice decline in 1990s was associated with THC spinup, & ongoing and future THC spindown (weak NAO forcing after 1997) will result in a slowdown in the rate of Arctic winter sea ice loss.

GRL, 2015

Geophysical Research Letters

RESEARCH LETTER	Predicted slowdown in the rate of Atlantic sea ice loss		
10.1002/2015GL065364	Stephen G. Yeager ¹ , Alicia R. Karspeck ¹ , and Gokhan Danabasoglu ¹		
Key Points: • Ocean thermohaline circulation	¹ Climate and Global Dynamics Laboratory, National Center for Atmospheric Research, Boulder, Colorado, USA		

 S2D prediction systems exhibit deficient signal variability (too much noise) 		RESEARCH LETTER 10.1002/2014GL059637 Key Points: • The winter NAO can be skilfully predicted months ahead • The signal-to-noise ratio of the predictable signal is anomalously low • Predictions of the risk of regional winter extremes are possible		Skillful long-range prediction of European and North American winters A. A. Scaife ¹ , A. Arribas ¹ , E. Blockley ¹ , A. Brookshaw ¹ , R. T. Clark ¹ , N. Dunstone ¹ , R. Eade ¹ , D. Fereday ¹ , C. K. Folland ^{1,2} , M. Gordon ¹ , L. Hermanson ^{1,3} , J. R. Knight ¹ , D. J. Lea ¹ , C. MacLachlan ¹ , A. Maidens ¹ , M. Martin ¹ , A. K. Peterson ¹ , D. Smith ¹ , M. Vellinga ¹ , E. Wallace ¹ , J. Waters ¹ , and A. Williams ¹ ¹ Met Office Hadley Centre, Exeter, UK, ² Department of Earth Sciences, University of Gothenburg, Gothenburg, Sweden, ³ Willis Research Network
		GRL, 2014		
RESEARCH LETTER 10.1002/2014GL061146 Key Points: • Model members can be too noisy and not potential realizations of the real world • Predictability may be underestimated by idealized experiments and skill measures • Can achieve skilful and reliable forecasts using large ensembles to reduce noise	Do seasonal-to-decadal climate predictions underestimate the predictability of the real world? Rosie Eade ¹ , Doug Smith ¹ , Adam Scaife ¹ , Emily Wallace ¹ , Nick Dunston Leon Hermanson ¹ , and Niall Robinson ¹ ¹ Met Office Hadley Centre, Exeter, UK	ne ¹ ,		<i>Nat. Geosci.</i> , 2016
			Chiltul	prodictions of the winter North Atlantic
			Oscilla Nick Dunsto	ation one year ahead
	npj Clim. Atm. Sci.,	2018	Martin And	rews and Jeff Knight
REVIEW ARTICLE A signal-to Adam A. Scaife ^{1,2} and D	open o-noise paradox in climate	science		
NCAR				

UCAR

The signal-to-noise paradox (in a nutshell)

- The inherent predictability of Earth's climate $(\sigma_{sig}/\sigma_{tot})$ is not known.
- However, initialized forecasts verified against observations provide a lower bound estimate of real-world predictability limits (ACC <= $\sigma_{sig}/\sigma_{tot}$).
- The inherent predictability of model climate can be quantified from forecast ensembles $\binom{\sigma_{sig}}{\sigma_{r}^{f}}$.
- Large ensemble climate forecast systems show that model-world predictability is often significantly lower than real-world predictability.

Ratio of Predictable Components (RPC) =
$$\frac{ACC}{\sigma_{sig}^{f}/\sigma_{tot}^{f}} = \frac{ACC}{S2T}$$

Signal-to-noise paradox when RPC > 1 (model predicts real-world better than it predicts itself)

→ Large ensembles needed to achieve skill (beat down excessive model noise)

→ Significant potential to improve/extend predictions by improving coupled model fidelity

BAMS, 2018

PREDICTING NEAR-TERM CHANGES IN THE EARTH SYSTEM

A Large Ensemble of Initialized Decadal Prediction Simulations Using the Community Earth System Model

S. G. Yeager, G. Danabasoglu, N. A. Rosenbloom, W. Strand, S. C. Bates, G. A. Meehl, A. R. Karspeck, K. Lindsay, M. C. Long, H. Teng, and N. S. Lovenduski

- 40-member CESM1.1-DPLE initialized each Nov. 1st 1954-2017 (N=64)
- ~26,000 sim-year experiment (CISL ASD award on Cheyenne)
- Pacific shock greatly ameliorated through improved FOSI initialization
- Direct comparison with 40-member CESM1-LE revealed widespread skill improvement associated with initialization (e.g., Sahel precipitation →)
- Large ensemble generally improves skill and also enhances confidence in differentiating DPLE from LE
- One of the first DP systems to include ocean biogeochemistry
- Evidence of signal-to-noise paradox

RPC ~ 2

The abyssal origins of North Atlantic decadal predictability

Stephen Yeager¹

NCAR UCA<u>R</u>

- Remarkably high and long-lasting ocean prediction skill in SPNA region made DPLE a good system for exploring the mechanisms underlying Atlantic skill.
- Conventional explanation: "AMOC"

The abyssal origins of North Atlantic decadal predictability

Stephen Yeager¹

 But skill for AMOC strength declines rapidly after a few years

The abyssal origins of North Atlantic decadal predictability

Stephen Yeager¹

- But skill for AMOC strength declines rapidly after a few years
- AMOC(σ) is a more relevant quantity for understanding decadal predictability in the N. Atlantic
- Time-lagged coupling of AMOC lower/upper limbs
 as a key decadal predictability mechanism
 - Core of ocean memory resides in deep (>2 km) Labrador Sea Water thickness anomalies
 - ➔ Lack of deep ocean observations poses a challenge for decadal prediction initialization

npj Clim. Atm. Sci., 2020

Check for updates

ARTICLE **OPEN** Decadal predictability of North Atlantic blocking and the NAO

Panos J. Athanasiadis 👩 🖾, Stephen Yeager 😚, Young-Oh Kwon 😚, Alessio Bellucci¹, David W. Smith⁴ and Stefano Tibaldi¹

- 40-member CESM1.1-DPLE ٠
- First study to demonstrate skillful decadal prediction of • winter NAO & blocking frequency
- Some evidence that *weak* decadal atmospheric signal ٠ was related to strong decadal ocean signal
- Skill is perceptible, but does not saturate, with a 40-• member ensemble

RPC ~ 6

Enhanced Skill and Signal-to-Noise in an Eddy-Resolving Decadal Prediction System

Stephen G. Yeager^{*1}, Ping Chang², Gokhan Danabasoglu¹, Lixin Wu³, Nan Rosenbloom¹, Qiuying Zhang², Fred S. Castruccio¹, Abishek Gopal², M. Cameron Rencurrel²

- iHESP has completed a 10-member set of DP hindcasts using high-resolution CESM1.3
- Can be directly compared to DPLE to isolate the impact of model horizontal resolution on prediction system performance

	HRDP	DPLE
Model	CESM1.3	CESM1.1
ocean	POP2 (0.1°, 62L)	POP2 (1°, 60L)
atmosphere	CAM5-SE (0.25°, 30L)	CAM5-FV (1°, 30L)
land	CLM4 (0.25°)	CLM4 (1°)
sea ice	CICE4 (0.1°)	CICE4 (1°)
Forcing	CMIP5	CMIP5
scenario	RCP8.5	RCP8.5
Initialization	Full field	Full field
ocean	FOSI (0.1°, OMIP2)	FOSI (1°, OMIP1*)
atmosphere	JRA55 reanalysis	N/A
land	<u>HighResMIP</u> Tier 1	N/A
sea ice	FOSI (0.1°, OMIP2)	FOSI (1°, OMIP1*)
Hindcasts	N=18	N=64
start date	November 1 st	November 1 st
start year	1982, <u>1984,</u> , 2016	1954-2017
simulation length	62 months	122 months
Ensemble Size	10	40
Total Simulation Years	930	~26,000

Enhanced Skill and Signal-to-Noise in an Eddy-Resolving Decadal Prediction System

Stephen G. Yeager^{*1}, Ping Chang², Gokhan Danabasoglu¹, Lixin Wu³, Nan Rosenbloom¹, Qiuying Zhang², Fred S. Castruccio¹, Abishek Gopal², M. Cameron Rencurrel²

Statistically significant skill <u>improvement</u> in HRDP(10) vs. DPLE(10) ACC: 33% of globe MSSS: 33% of globe

 Statistically significant skill <u>degradation</u> in HRDP(10) vs. DPLE(10) ACC: 9% of globe MSSS: 15% of globe

Enhanced Skill and Signal-to-Noise in an Eddy-Resolving Decadal Prediction System

Stephen G. Yeager^{*1}, Ping Chang², Gokhan Danabasoglu¹, Lixin Wu³, Nan Rosenbloom¹, Qiuying Zhang², Fred S. Castruccio¹, Abishek Gopal², M. Cameron Rencurrel²

- Relative occurrence in units of fraction of global surface area of paired ACC/RPC values (note that slope gives S2T)
- Overall higher skill in HRDP

NCAR UCAR

 Signal-to-noise paradox, clearly evident in DPLE(40), is significantly ameliorated in HRDP due to higher S2T in regions where ACC is high

$$RPC = \frac{ACC}{S2T}$$
, $S2T = \frac{ACC}{RPC}$

Enhanced Skill and Signal-to-Noise in an Eddy-Resolving Decadal Prediction System

Stephen G. Yeager^{*1}, Ping Chang², <u>Gokhan</u> Danabasoglu¹, <u>Lixin</u> Wu³, Nan Rosenbloom¹, <u>Qiuying</u> Zhang², Fred S. Castruccio¹, <u>Abishek</u> Gopal², M. Cameron Rencurrel²

- → Current estimates of climate predictability based on coarse resolution models may be overly pessimistic.
- ➔ Higher horizontal resolution improves coupled model fidelity (it improves prediction skill and helps to resolve the signal-to-noise paradox).
- ➔ Mesoscale air-sea interaction (present in HRDP but absent in DPLE) is a key mechanism involved in the transmission of predictable signals from the ocean to the atmosphere.
- ➔ Inclusion of ocean "noise" in a prediction system has the net effect of increasing signal more than noise in the atmosphere.

Summary Thoughts

- We've come a long way in the past ~10 years. DP research has delivered more than most would have anticipated back in the late 2000s in terms of refining our understanding of and capacity to predict regional environmental change years in advance.
- CESM DP efforts have been at the forefront of many recent advances in the field (large ensembles, sensitivity to initialization, carbon cycle prediction, mechanistic understanding, high resolution), in large part due to collaborative group efforts that have built bridges between disciplines, CGD sections, funding streams, NCAR Laboratories, and between NCAR and the broader university community.
- CGD/NCAR is well-positioned to continue serving as a community hub for DP research (e.g., CESM ESPWG).
- Advancements in DP system design have led to reappraisals of our estimation of the inherent limits of Earth system predictability on climate timescales. Indications are that we have not yet reached the true limits. More research is clearly warranted to explore the many outstanding questions (how to minimize drift & shock; methods to improve initialization; sensitivity to resolution; predictability mechanisms; etc.) and to push the frontiers of actionable Earth system prediction science.

Thank You

