State of the Community Climate System Model

Peter Gent

Chairman

CCSM Scientific Steering Committee

gent@ucar.edu

Recent Science Highlights

CCSM IJHPCA Special Issue

Objectives

Describe SE for climate modelsDocument performance and portability

- •13 papers published in Fall 2005, Volume 19, Number 3
- Authorship
 - ➢ 32 External
 - > 9 NCAR

B
BIOCEPARaters Ann view one were regarded access

Recent Science Highlights

26 papers

- > SSC (1)
- > Atmosphere Model (6)
- > Ocean Model (4)
- ➤ Land Model (2)
- Climate Change (2)
- Climate Variability (4)
- Polar Climate(4)
- > Paleoclimate (3)
- 510 pages
- Authorship
 - ➢ 51 NCAR
 - ➤ 48 External

J. Climate Special Issue devoted to CCSM3: Vol 19, No 11, June 1, 2006

Contributions to IPCC Fourth Assessment

- Output: 10 GB/simulated year
- Data volume for IPCC: ~100 TB
- Largest contribution of any model
- Eight ensemble members at T85 O for some experiments
- Data available online:
 - PCMDI (IPCC archive)
 - ESG (Control)
- Original history tapes: SCD
- Diagnostics on line (web)

Downloads of CCSM3 Data from NCAR via the Earth System Grid in 2005

Month	Requests	Volume (GB)	
January	710	84	
February	1229	86	
March	2640	194	
April	1285	189	
May	1431	377	
June	1259	195	
July	1522	698	
August	3033	871	
September	3920	1500	
October	5693	2130	
November	9070	2080	
December	5493	1860	

Total was 37,285 requests; 10.25 TB of data downloaded. NCA

Near-term Scientific Priorities

- Get a good coupled simulation using the finite volume dynamical core; need a sea-ice distribution that is comparable to, or better than, the CCSM3 simulation.
- Improve the major biases in the CCSM3 simulations.
- The most eye-catching bias is the double ITCZ in the tropical Pacific Ocean and the high frequency of ENSO.

b30.081 Yrs 0401 - 0410

b30.009 Yrs 0401 - 0410

b30.081 - b30.009

b30.081 is FV 2.2x1.9 b30.009 is CCSM3 T85

b30.081 is FV 2.2x1.9

b30.009 is CCSM3 T85

b30.081 is FV 2.2x1.9

b30.004 is CCSM3 T42

Labrador Sea, T(182m), Year 10

T42x1 Without Smag

CCSM3

Temp and Velocity at 97 m.

With Smag

FV2.2x1.9

Without Smag

Temp and Velocity at 97 m.

With Smag

Some major issues in CCSM3 simulations

Temperature and Precipitation

- Biases in continental temperature and precipitation
- SSTs in coastal stratus regions
- Semi-annual cycle in SST for the E. Pacific
- Arctic low cloud and temperature biases
- Tropical tropopause biases
- Double ITCZ in the Pacific
- Representation of major modes of variability
 - El Nino / Southern Oscillation
 - The Madden-Julian Oscillation

Nino3 SST Power Spectra

Gent and Kiehl, 2004; Collins et al, 2006

Continental Temperature

NCAR

Collins et al, 2006

Ideal age at 3km depth in ocean.

Inefficient mixing in Permian ocean indicative of anoxia

Kiehl and Shields (2005)

Arctic Sea Ice Area in Hosing Experiments

Longer-term Scientific Priorities

- Include biogeochemistry and ocean ecosystem model for the carbon cycle.
- Include both the direct and indirect effects of aerosols.
- Include a land ice sheet model.
- Include interactive vegetation and land use changes in the land component.
- Atmospheric chemistry component has been added to CAM3; include the effects of tropospheric ozone.

Multi-Century Coupled Carbon/Climate Simulations

- Fully prognostic land/ocn BGC and carbon/radiation
- Atm-Land CO₂ flux: 70 PgC/yr $\uparrow\downarrow$; Atm-Ocean CO₂ flux: 90 PgC/yr $\uparrow\downarrow$
- Net Land+ocean CO₂ flux: 0±1 PgC/yr
- "Stable" carbon cycle and climate over 1000 years

Doney, Lindsay, Fung and John: Accepted by J Climate

Flux of CO₂ into the world oceans *(Ocean ecosystem model)*

DIC Surface Flux - annual mean

Moore, Doney, and Lindsay

Greenland ice sheet

- Volume ~ 2.8 million km³ (~7 m sea level equivalent)
- Area ~ 1.7 million km^2
- Mean thickness ~ 1.6 km
- Accumulation ~ $500 \text{ km}^3/\text{yr}$
- Surface runoff ~ $300 \text{ km}^3/\text{yr}$
- Iceberg calving ~ $200 \text{ km}^3/\text{yr}$

Bill Lipscomb, LANL

Annual accumulation (Bales et al., 2001)

Unstable Glaciers

Surface melt on Greenland ice sheet descending into moulin, a vertical shaft carrying the water to base of ice sheet.

Source: Roger Braithwaite

The timeline for IPCC AR5

Assumptions:

2005

2006

2007

- It is likely that the AR5 report will be issued 6 years after AR4, in 2013.
- Following the precedent in AR4, the simulations will have to be finished three years ahead, in 2010.
- Thus, CCSM4 has to be ready for production in 2009.
- CCSM4 has to be ready for testing in 2008.

2008

2009

2010

2011

2012

Current SSC Members and Terms

Gordon Bonan, NCAR	8/1/2003	7/31/2007
Chris Bretherton, U Washington	1/1/2002	12/31/2006
Julie Cole, U Arizona	1/1/2006	12/31/2007
Bill Collins, NCAR	1/1/2006	12/31/2007
Scott Doney, WHOI	6/1/2002	6/30/2008
Peter Gent, NCAR	7/1/2005	6/30/2007
Steve Ghan, PNNL	1/1/2006	12/31/2007
Jim Hurrell, NCAR	No term	
Bill Large, NCAR	1/1/2003	12/31/2006
Danny McKenna, NCAR	1/1/2001	12/31/2006
Ben Santer, UCA/PCMDI	8/1/2003	7/31/2007
Mariana Vertenstein, NCAR	9/15/2004	9/14/2006

CONCLUSIONS

- IPCC work and special journal issues have gone well.
- There is now a 420 yr coupled integration with the FV core that is equivalent to the CCSM3 IPCC simulations.
- There are other biases in the CCSM3 that are currently being addressed, with varying degrees of success.
- Updated CSM1 biogeochemistry is running in CCSM3.
- The land component intercomparison is underway.
- Work on including indirect aerosol effects, the land ice component, and atmospheric chemistry have started.

The CCSM Distinguished Achievement Award for 2006

- This award was presented to Byron Boville.
- The ceremony was held at NCAR on Friday, May 26th 2006.

Byron Arthur Boville

8/25/1953

6/6/2006