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Interpolating atmospheric winds

To compute the stress on the ocean surface, we require the
atmospheric wind velocity on the ocean grid.
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atmospheric wind velocity on the ocean grid.

Typically the atmospheric grid scale is much coarser than the
ocean grid scale
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Example:Interpolating atmospheric winds, ...

Consider an analytic flow pattern
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Example:Interpolating atmospheric winds, ...

Consider an analytic flow pattern

Of interest is the surface stress τ = Cp|U |U , where U = (u, v),
especially ∇× τ .

David Neckels, NCAR – p.3/17



Example: curl of tau

Curl of the analytic flow on the ocean grid is smooth
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Example: curl of tau

Curl of the analytic flow on the ocean grid is smooth

Curl of the standard bi-linear interpolant is not!
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Computation aspects of interpolation

To compute the interpolant from two distinct grids, there are
several key steps
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Computation aspects of interpolation

To compute the interpolant from two distinct grids, there are
several key steps

• Parallel rendezvous

• Search (point in box)

• Interpolation method (bi-linear, conservative, patch...)

Each of these topics is its own talk. We begin with the
Interpolation method.

David Neckels, NCAR – p.5/17



Bi-linear interpolation

A standard interpolation scheme is the bi-linear scheme
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Bi-linear interpolation

A standard interpolation scheme is the bi-linear scheme

The value at A is a weighted sum of the values at U, V,W,Z,
with the bi-linear shape functions φ as the weights.
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Bi-linear interpolation

A standard interpolation scheme is the bi-linear scheme

The value at A is a weighted sum of the values at U, V,W,Z,
with the bi-linear shape functions φ as the weights.

A reasonable approximation to ∇A is U∇φ1 + · · · + Z∇φZ .
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Patch based methods

We form the interpolant at • using polynomials based on the
node patches of the encompassing cell:
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Patch based methods,...

On each patch we sample the source function at a set of sample
points (usually quadrature points) △, using local bi-linear
interpolation if necessary.

Call these samples si at (local 2D) coordinates pi.
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Local polynomial approximation

We fit a tensor product polynomial through these values, solving
for the polynomial coefficients c

min
c

∑

i

(Q(c, pi) − si)
2
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Local polynomial approximation

We fit a tensor product polynomial through these values, solving
for the polynomial coefficients c

min
c

∑

i

(Q(c, pi) − si)
2

Which yields the least squares system A⊤Ac = A⊤s and
Q(p) = b(p)T (A⊤A)−1s where b is the vector of the polynomial
basis functions evaluated at the sample points.
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Local polynomial approximation

We fit a tensor product polynomial through these values, solving
for the polynomial coefficients c

min
c

∑

i

(Q(c, pi) − si)
2

Which yields the least squares system A⊤Ac = A⊤s and
Q(p) = b(p)T (A⊤A)−1s where b is the vector of the polynomial
basis functions evaluated at the sample points.

On a manifold, the local coordinates pi may either be full 3D
coordinates, or the coefficients of the co-space of a reasonable
normal.
This avoids pole type singularities in the patch algorithm (i.e.
don’t use lat/lon).
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Blending the patches

We use any partition of unity on the cell to blend the patches for
a value F (x) =

∑

j ψj(x)Q(x), for instance the bi-linear basis.
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Blending the patches

We use any partition of unity on the cell to blend the patches for
a value F (x) =

∑

j ψj(x)Q(x), for instance the bi-linear basis.

Explicitly, accounting for the local coordinate system p = L(x)
and the bi-linear interpolation to sample locations s = Φf , the
interpolant is a linear function of the coefficients f on this
enlarged stencil,

F (x) =
∑

j

[

ψ(x)
(

b ◦ L(x)
)⊤

(A⊤A)−1Φ
]

j
f
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Back to curl of tau

Curl of the analytic flow on the ocean grid is smooth
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Back to curl of tau

Curl of the analytic flow on the ocean grid is smooth

The patch recovery curl is far more reasonable compared to the
bi-linear!
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Some results from interpolation theory

Interpolating a function f(x) into the space of continuous
piecewise polynomial functions of order p on a discretization Th,
with cell diameters h, using exact values of f at the nodes yields
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Some results from interpolation theory

Interpolating a function f(x) into the space of continuous
piecewise polynomial functions of order p on a discretization Th,
with cell diameters h, using exact values of f at the nodes yields

||Dm(f − If)||L2 ≤ Ch(p+1)−m||Dp+1f ||L2

i.e. for bi-linear interpolation

||f − If ||L2 ≤ Ch2||D2f ||L2

and
||∇(f − If)||L2 ≤ Ch||D2f ||L2

Smoothness is required, at least of weak derivatives ||D2f ||L2 .
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An experiment

We perform a convergence study for the analytic function

f(x, y) = (1 − xy) sin 3πx cos 2πy)

on the unit square using patch and bi-linear interpolation.
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An experiment

We perform a convergence study for the analytic function

f(x, y) = (1 − xy) sin 3πx cos 2πy)

on the unit square using patch and bi-linear interpolation.

Exact
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An experiment

We perform a convergence study for the analytic function

f(x, y) = (1 − xy) sin 3πx cos 2πy)

on the unit square using patch and bi-linear interpolation.

Bilinear
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An experiment

We perform a convergence study for the analytic function

f(x, y) = (1 − xy) sin 3πx cos 2πy)

on the unit square using patch and bi-linear interpolation.

Patch
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Results

We compute the L2 error on a super fine grid.
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Results
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Results

We compute the L2 error on a super fine grid.
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Rates are P = 3.14, B = 1.96,∇P = 2.01,∇B = 1.01.
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A real wind field

We compare interpolation methods on realistic wind data
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A real wind field

We compare interpolation methods on realistic wind data

The exact wind field (|U |)
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A real wind field

We compare interpolation methods on realistic wind data

The bi-linear interpolant
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A real wind field

We compare interpolation methods on realistic wind data

The patch interpolant
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Curl of the real wind field

We compare interpolation methods on realistic wind data
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Curl of the real wind field

We compare interpolation methods on realistic wind data

The exact wind field (∇× U )
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Curl of the real wind field

We compare interpolation methods on realistic wind data

The bi-linear interpolant
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Curl of the real wind field

We compare interpolation methods on realistic wind data

The patch interpolant
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The End
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