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Patch recovery interpolation
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Interpolating atmospheric winds

To compute the stress on the ocean surface, we require the
atmospheric wind velocity on the ocean grid.
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Interpolating atmospheric winds

To compute the stress on the ocean surface, we require the
atmospheric wind velocity on the ocean grid.

Typically the atmospheric grid scale is much coarser than the
ocean grid scale
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Example:Interpolating atmospheric winds, ...

Consider an analytic flow pattern
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Example:Interpolating atmospheric winds, ...

Consider an analytic flow pattern

Of interest is the surface stress τ = Cp|U |U , where U = (u, v),
especially ∇× τ .
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Example: curl of tau

Curl of the analytic flow on the ocean grid is smooth
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Example: curl of tau

Curl of the analytic flow on the ocean grid is smooth

Curl of the standard bi-linear interpolant is not!
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Computation aspects of interpolation

To compute the interpolant from two distinct grids, there are
several key steps
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Computation aspects of interpolation

To compute the interpolant from two distinct grids, there are
several key steps

• Parallel rendezvous

• Search (point in box)

• Interpolation method (bi-linear, conservative, patch...)

Each of these topics is its own talk. We begin with the
Interpolation method.
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Bi-linear interpolation

A standard interpolation scheme is the bi-linear scheme
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Bi-linear interpolation

A standard interpolation scheme is the bi-linear scheme

The value at A is a weighted sum of the values at U, V,W,Z,
with the bi-linear shape functions φ as the weights.
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Bi-linear interpolation

A standard interpolation scheme is the bi-linear scheme

The value at A is a weighted sum of the values at U, V,W,Z,
with the bi-linear shape functions φ as the weights.

A reasonable approximation to ∇A is U∇φ1 + · · · + Z∇φZ .
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Patch based methods

We form the interpolant at • using polynomials based on the
node patches of the encompassing cell:
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Patch based methods,...

On each patch we sample the source function at a set of sample
points (usually quadrature points) △, using local bi-linear
interpolation if necessary.

Call these samples si at (local 2D) coordinates pi.
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Local polynomial approximation

We fit a tensor product polynomial through these values, solving
for the polynomial coefficients c

min
c

∑

i

(Q(c, pi) − si)
2
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Local polynomial approximation

We fit a tensor product polynomial through these values, solving
for the polynomial coefficients c

min
c

∑

i

(Q(c, pi) − si)
2

Which yields the least squares system A⊤Ac = A⊤s and
Q(p) = b(p)T (A⊤A)−1s where b is the vector of the polynomial
basis functions evaluated at the sample points.
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Local polynomial approximation

We fit a tensor product polynomial through these values, solving
for the polynomial coefficients c

min
c

∑

i

(Q(c, pi) − si)
2

Which yields the least squares system A⊤Ac = A⊤s and
Q(p) = b(p)T (A⊤A)−1s where b is the vector of the polynomial
basis functions evaluated at the sample points.

On a manifold, the local coordinates pi may either be full 3D
coordinates, or the coefficients of the co-space of a reasonable
normal.
This avoids pole type singularities in the patch algorithm (i.e.
don’t use lat/lon).
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Blending the patches

We use any partition of unity on the cell to blend the patches for
a value F (x) =

∑

j ψj(x)Q(x), for instance the bi-linear basis.
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Blending the patches

We use any partition of unity on the cell to blend the patches for
a value F (x) =

∑

j ψj(x)Q(x), for instance the bi-linear basis.

Explicitly, accounting for the local coordinate system p = L(x)
and the bi-linear interpolation to sample locations s = Φf , the
interpolant is a linear function of the coefficients f on this
enlarged stencil,

F (x) =
∑

j

[

ψ(x)
(

b ◦ L(x)
)⊤

(A⊤A)−1Φ
]

j
f
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Back to curl of tau

Curl of the analytic flow on the ocean grid is smooth
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Back to curl of tau

Curl of the analytic flow on the ocean grid is smooth

The patch recovery curl is more reasonable than the bi-linear!
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Some results from interpolation theory

Interpolating a function f(x) into the space of continuous
piecewise polynomial functions of order p on a discretization Th,
with cell diameters h, using exact values of f at the nodes yields
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||Dm(f − If)||L2 ≤ Ch(p+1)−m||Dp+1f ||L2

i.e. for bi-linear interpolation

||f − If ||L2 ≤ Ch2||D2f ||L2
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Some results from interpolation theory

Interpolating a function f(x) into the space of continuous
piecewise polynomial functions of order p on a discretization Th,
with cell diameters h, using exact values of f at the nodes yields

||Dm(f − If)||L2 ≤ Ch(p+1)−m||Dp+1f ||L2

i.e. for bi-linear interpolation

||f − If ||L2 ≤ Ch2||D2f ||L2

and
||∇(f − If)||L2 ≤ Ch||D2f ||L2

Smoothness is required, at least of weak derivatives ||D2f ||L2 .
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An experiment

We perform a convergence study for the analytic function

f(x, y) = (1 − xy) sin 3πx cos 2πy)

on the unit square using patch and bi-linear interpolation.
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An experiment
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on the unit square using patch and bi-linear interpolation.
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An experiment

We perform a convergence study for the analytic function

f(x, y) = (1 − xy) sin 3πx cos 2πy)

on the unit square using patch and bi-linear interpolation.

Bilinear
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An experiment

We perform a convergence study for the analytic function

f(x, y) = (1 − xy) sin 3πx cos 2πy)

on the unit square using patch and bi-linear interpolation.

Patch
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Results

We compute the L2 error on a super fine grid.
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Results
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Results

We compute the L2 error on a super fine grid.
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Rates are P = 3.14, B = 1.96,∇P = 2.01,∇B = 1.01.

David Neckels, NCAR – p.15/33



A real wind field

We compare interpolation methods on realistic wind data
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A real wind field

We compare interpolation methods on realistic wind data

The exact wind field (|U |)
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A real wind field

We compare interpolation methods on realistic wind data

The bi-linear interpolant
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A real wind field

We compare interpolation methods on realistic wind data

The patch interpolant
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Curl of the real wind field

We compare interpolation methods on realistic wind data
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Curl of the real wind field

We compare interpolation methods on realistic wind data

The exact wind field (∇× U )

David Neckels, NCAR – p.17/33



Curl of the real wind field

We compare interpolation methods on realistic wind data

The bi-linear interpolant
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Curl of the real wind field

We compare interpolation methods on realistic wind data

The patch interpolant

David Neckels, NCAR – p.17/33



Parallel rendezvous
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Description of the Problem

To interpolate data from one grid(mesh) to another, where each
is distributed, independently, in parallel.
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Description of the Problem

To interpolate data from one grid(mesh) to another, where each
is distributed, independently, in parallel.

How to calculate weights in an efficient/load balanced manner?

How to perform the interpolation in an efficient/load balanced
manner?
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Bounding box and load imbalance problem

In the most straightforward approach, bounding boxes for each
processor’s grid are shared amongst processors.
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Bounding box and load imbalance problem

In the most straightforward approach, bounding boxes for each
processor’s grid are shared amongst processors.

A destination cell (or point) locates the source processor with a
cell(s) that contains it.

Destination points are shipped to the source grid decomposition
for the search and weight calculation.

These bounding boxes depend on a fixed coordinate system
(which the two grids must negotiate), and optimal performance
requires the parallel decomposition be roughly aligned with this
coordinate system.
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Bounding box and load imbalance problem

In the most straightforward approach, bounding boxes for each
processor’s grid are shared amongst processors.

A destination cell (or point) locates the source processor with a
cell(s) that contains it.

Destination points are shipped to the source grid decomposition
for the search and weight calculation.

These bounding boxes depend on a fixed coordinate system
(which the two grids must negotiate), and optimal performance
requires the parallel decomposition be roughly aligned with this
coordinate system.

This condition is rarely satisfied.
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Load in balance problem

The interpolation problem is by nature geometric, but the grid
decomposition is not necessary so
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Load in balance problem

The interpolation problem is by nature geometric, but the grid
decomposition is not necessary so

In the worst case, the entire source mesh may be shipped to
one processor! This standard approach lacks robustness.
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A Geometric solution

We construct a new partition for each mesh such that the
portions of each mesh on a given processor are geometrically
collocated!
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A Geometric solution

We construct a new partition for each mesh such that the
portions of each mesh on a given processor are geometrically
collocated!

Also, the union of meshes is load balanced!
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RCB to the rescue

The Recursive Coordinate Bisection algorithm is a parallel
algorithm for partitioning a set of geometric entities (possibly
with weights). The package Zoltan provides this.
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RCB to the rescue

The Recursive Coordinate Bisection algorithm is a parallel
algorithm for partitioning a set of geometric entities (possibly
with weights). The package Zoltan provides this.

A parallel median-finding kernel is at the core of the algorithm.
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Intersecting grids

This algorithm is only applied to the geometric intersection of the
meshes.
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Non-regular decompositions

Representing the meshes in the Rendezvous decomposition is a
challenge since, in general, the meshes will not have a regular
decomposition in this space.
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Non-regular decompositions

Representing the meshes in the Rendezvous decomposition is a
challenge since, in general, the meshes will not have a regular
decomposition in this space.

We need a representation for such decompositions.
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The rendezvous matrix application

The interpolation forms a commutative diagram
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The rendezvous matrix application

The interpolation forms a commutative diagram

SrcR
C

−−−−→ DstR

A

x




B

x





Srcs
I

−−−−→ Dstd
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The rendezvous matrix application

The interpolation forms a commutative diagram

SrcR
C

−−−−→ DstR

A

x




B

x





Srcs
I

−−−−→ Dstd

Where A and B are the mesh migration communication spec’s
and C is the local interpolation operator. The subscripts s,d ,R
are the source,destination and rendezvous decompositions. We
have I = B⊤ ◦ C ◦ A.
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The rendezvous matrix application

The interpolation forms a commutative diagram

SrcR
C

−−−−→ DstR

A

x




B

x





Srcs
I

−−−−→ Dstd

Where A and B are the mesh migration communication spec’s
and C is the local interpolation operator. The subscripts s,d ,R
are the source,destination and rendezvous decompositions. We
have I = B⊤ ◦ C ◦ A.

We ship fields and results using the mesh migration comm
spec’s A and B⊤.
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Results

We interpolate from a 3d volume to a 2d manifold (bilinear). The
volume contains 4M cells, the surface contains 1.9M cells. Only
984K source cells intersect the destination bounding box. Using

UCAR’s lightning cluster. 128 nodes, each with two 2.2GHz
AMD Opteron processors, 4GB memory shared. 128-port
Myrinet switch through single-port Myrinet PCI adaptor.
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Results, timing

Timings:
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Example, analytic wind field

We interpolate an analytic wind field from a standard lat/lon
earth grid to the POP ocean grid.

We use both bilinear and a patch-interpolation method.

David Neckels, NCAR – p.29/33



Rendezvous grid

The rendezvous grid decomposition for these meshes
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Patch vs Bilinear gradients

The patch method produces much more accurate derivatives,
curl is shown here.
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Patch vs Bilinear gradients

The patch method produces much more accurate derivatives,
curl is shown here.

Patch recovered Error
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Patch vs Bilinear gradients

The patch method produces much more accurate derivatives,
curl is shown here.

Bilinear Error

David Neckels, NCAR – p.31/33



Conclusions

The patch recovery interpolation is a parallel-friendly
interpolation method preserving derivatives

David Neckels, NCAR – p.32/33



Conclusions

The patch recovery interpolation is a parallel-friendly
interpolation method preserving derivatives
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robust method to perform parallel regridding and (with the
addition of a fractional area kernel) to compute the exchange
grid.
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Conclusions

The patch recovery interpolation is a parallel-friendly
interpolation method preserving derivatives

The Rendezvous algorithm presents a straightforward and
robust method to perform parallel regridding and (with the
addition of a fractional area kernel) to compute the exchange
grid.

For some meshes, the matrix multiplication should be performed
in rendezvous space, to combat load imbalance.
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