On-line Aerosols in the Oslo Version of CAM3: Some shortcomings

Trond Iversen, Alf Kirkevåg, Øyvind Seland, Jon Egill Kristjansson, Trude Storelvmo, Jens Debernard Norwegian Meteorological Institute and University of Oslo, Norway

12th CCSM Workshop, June 2007

"CAM-Oslo" extended from "CCM-Oslo"

Basis: NCAR CAM3 extended with

- aerosol lifecycling, production-tagged composition
- Particle interactions with radiation
- Particle interaction with clouds

From CCM-Oslo

(based on CCM3.2; used in AeroCom B):

Sulphur and Black carbon

(Iversen and Seland, 2002; Kirkevåg and Iversen, 2002; Kristjansson, 2002; Kristjansson et al., 2005)

Particulate organic matter (Kirkevåg et al. 2005)

Major change to CCM-Oslo:

- Lifecycling of sea-salt and mineral aerosols
- Aitken size category included separatly
- Numerous different combinations of internal mixing from condensation and coagulation

Size, optical properties and Cloud Condensation Nuclei from precalculated tables

Both pure atmospheric simulations and climate equilibrium calculations coupled to slab ocean

Atmosphere off-line: run for 5 years the last 3 are used for analysis Equilibrium: Up to 50 years simulations with first 10 years regarded as spin-up

Model Evaluation Summary

- As most aerocom-models or better when compared to
 - most standard observations at ground level,
 - □ a few aircraft campaigns (all in Pacific Ocean)
 - Modis and MISR Satellite and aeronet retrievals of AOD and Angstrom parameter
 - Lidar vertical profiles
- Some important concerns:
 - Underestimations in tropical biomass burning regions
 - Wintertime Arctic haze underestimated
 - Very few particles in some remote regions (Pacific) (– error?)
 - Slightly positive direct aerosol forcing;
 - practically unsensitive to many uncertain assumptions
 - Indirect effects almost cancel 1.63xCO2-warming

Total Aerosol Optical Depth, τ_{550}

CAM-Oslo

MODIS

Mean: 99999999

AeroCom, Median

AOD (τ_{550}), anthrop. SO4, OC and BC Increment from Pre-industrial to aerocomB (2000) (B - Pre)

Cloud droplet number concentrations, CDNC (cm⁻³)

below ca. 870 hPa	CAM3, prescribed	CAM-Oslo, Diagnostic	Observations (Seinfeld and Pandis, 1997; Ghan et al., 1997)
Marine	~ 150 ~ 75 (sea-ice)	~ 5 - 200	~ 20 - 200
Continental	~ 200 - 400	~ 20 - 1000	~ 100 - 1000

Δ Precipitation (%)

Table 5: Experiments with CAM-Oslo run as an atmospheric GCM, testing the sensitivity to background droplet number concentrations (CDNC). Changes in liquid water path (LWP), effective cloud droplet radii as seen from satellite (R_{effl-S} : as in Kristjánsson, 2002), as well as the combined first and second indirect forcing by anthropogenic aerosols (since pre-industrial time) are global annual means.

	Change in	Change in	1 st + 2 nd Indirect Forcing (W m ⁻²)	
CDNC treatment	LWP	\mathbf{R}_{effl-S}		
	(g m ⁻²)	(µm)		
Standard CDNC	9.25	-1.41	-2.34	
Standard CDNC + 15 cm ⁻³	5.09	-0.99	-1.36	

STD CDNC

STD CDNC + 15 cm⁻³

120₩

-0.25

-0.75

Anthropogenic change in SWCF (W/m²)

3 1 D CUNC + 19 CM

Anthropogenic change in SWCF (Wm⁻²)

60w

What's missing?

- Improved cloud droplet budgets
 - Storelvmo et al (2006), based on droplet scheme of Ghan and Abdul-Raszak et al, reduced indirect effect from -1.1 to -0.1 W m⁻²
- Ice-cloud effects
- Nitrate aerosols
- Primary aerosols:
 - Non-desert, dust-producing areas underestimated
 - No primary biological particles

Thank You

Aerosol optical depth and direct radiative forcing:

Exp.	AOD (B)	AOD (B) SO4	AOD (B) POM	AOD (B) BC	AOD (B) Sea- salt	AOD (B) Dust	DRF (B (W/ Surface	8-Pre) m²) TOA,
E1	0.138	0.0238	0.0217	0.0018	0.0704	0.0203	-1.13	0.036
E2	0.136	0.0205	0.0222	0.0018	0.0706	0.0206	-1.15	0.080
E3	0.107	0.0244	0.0224	0.0019	0.0375	0.0205	-1.15	0.027
E4	0.140	0.0248	0.0212	0.0018	0.0716	0.0203	-1.12	0.027

E1: Base run

- E2: 75nm SO4 primary acc. mode \rightarrow H2SO4 gas
- E3: standard Aerocom sea-salt
- E4: 0.1% ss_coarse re-allocated to ss_aitken

Acknowledgement and references

- Acknowledgement
 - The project is financed by the Norwegian Research Council through the project AerOzClim
 - The project has received support from NRC through a grant of computing time
- References
 - Kirkevåg et al (2005) Dep. Of Geosciences institute report No 128
 - Iversen and Seland(2002) JGR 107 D24 4751;
 - Mårtensson et al (2003) JGR 108 D9 2397
 - Ogren and Charlson (1983) Tellus 35B 241-254
 - Seinfeld and Pandis (1998) Atmospheric Chemistry and Physics. From air pollution to climate change
 - Stier et al (2005) ACP 5, 1125-1156
 - Textor et al. (2005) ACP 5 8331-8420;

Lognormal externally mixed modes (Primary "Background") Basis for Condensation and Coagulation

modes	modal median radius (μm)	
SO ₄ (n), BC(n)	0.0118	
OC(Ait)	0.04	
BC(ac)	0.1 ("fluffy" fractal)	
BC(Ait)	0.04	
OCBC(Ait)	0.04	
504(ac)	0.075	
MINERAL	0.22, 0.63	
SEA-SALT	0.022, 0.13, 0.76	

For internal mixtures involving Sulfate, OC and BC:

- \checkmark SO₄ from condensation
- \checkmark SO₄ from cloud processing
- ✓ BC from coagulation
- \checkmark OC from coagulation

all pre-existing particles (ex. BC(ac)) min. & ss. & Ait & a modes min. & ss. modes min. & ss. modes

These processes, the optical properties, and the Kohler growth Are tabulated in CAM3, based on process specific aerosol concentrations

onto mode

Total mass concentrations / ppm(mass)

1 2 4 7 10 20 40 70 100 200 400

Total number concentrations / cm⁻³

50 100 200 500 1000 2000 5000

