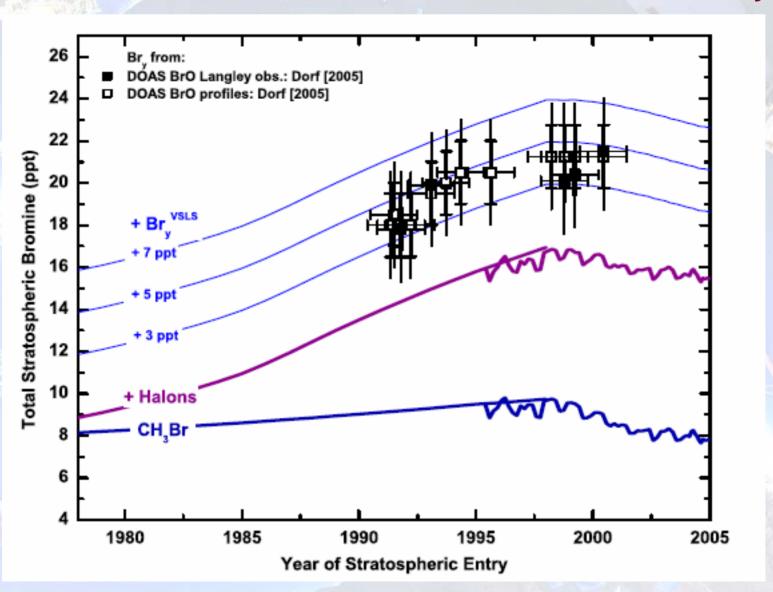
Very Short-Lived Halocarbons into CAM-Chem

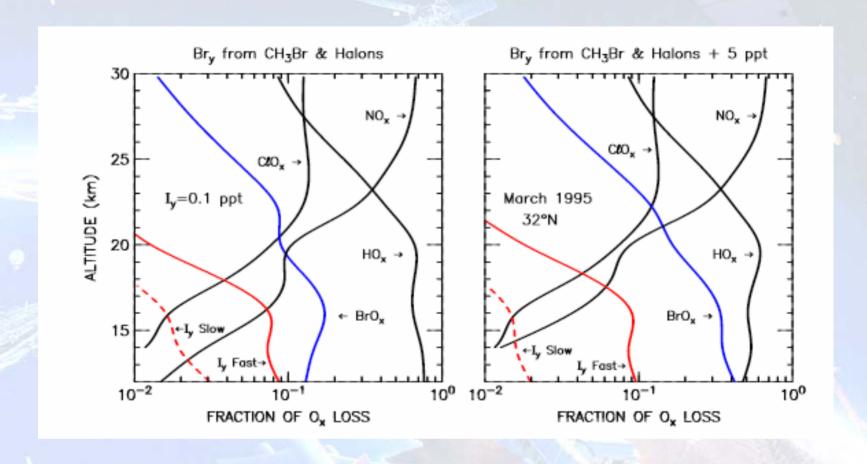
Don Wuebbles

Department of Atmospheric Sciences
University of Illinois
Urbana, Illinois 61801

Halogens and Tropospheric Chemistry

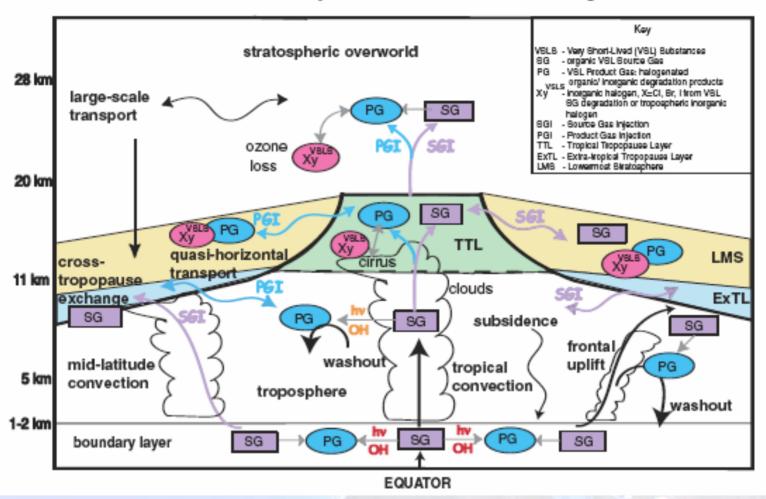

Boundary Layer

- Effects on ozone (above snow, over salt lakes)
- Br, Cl interactions over marine areas
- Effects on DMS chemistry (von Glasow, 2004)

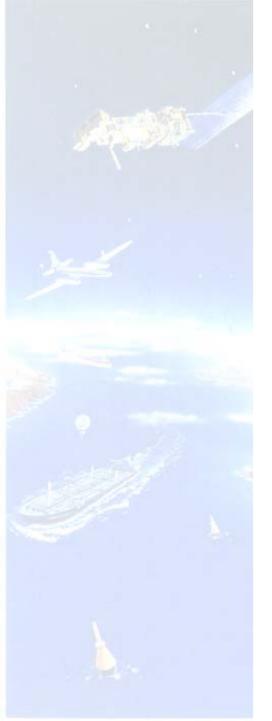

Free Troposphere

- Cl is ~10% initiation of methane oxidation
- BrONO2 important to HNO3 production in lower troposphere (as much as 30%)
- Partitioning of OH and Ho2
- Partitioning of NO and NO2

VSL Halocarbons & Stratospheric Bry



VSL Halocarbons Affect Stratospheric O_x



VSL Halocarbons Affect Troposphere and Stratospheric Chemistry

Chemical and Dynamical Processes Affecting VSLS

Compound	Local Lifetime (days)	Estimated Burden (Gg)	Estimated Removal Rate (Gg yr¹)	Estimated Source from Inventory or Estimate of Biogeochemical Cycle (Gg yr ⁻¹)
CH ₂ BrCl CH ₂ Br ₂	150° 120°	1.2 (Br), 0.5 (Cl) ¹ 18-22 (Br) ^b	2.9 (Br), 1.3 (Cl) ^c 55-67 (Br) ^c	
CHBrCl ₂	78ª	19 (Br) ¹ 1.3-1.5 (Br) ^b 1.2-1.3 (Cl) 1.2 (Br), 1.1 (Cl) ¹	58 (Br) ^c 6.1-7.0 (Br) ^c 5.4-6.2 (Cl) 5.5 (Br), 4.9 (Cl) ^c	17 (Cl) open ocean ^{15,h} 19 (Br) open ocean ^{15,h}
CHBr ₂ Cl	69ª	0.8-2.2 (Br), 0.2-0.5 (Cl) ^b	4.2-12 (Br), 0.9- 2.7 (Cl) ^e	5 (Cl) open ocean ^{15,h} 23 (Br) open ocean ^{15,h}
CHBr ₃	264	2.3 (Br), 0.5 (Cl) ¹ 11-18 (Br) ^b 14 (Br) ¹	12 (Br), 2.7 (Cl) ^e 150-250 (Br) ^e 200 (Br) ^e 285 ^{2, d}	209 (47-370) (Br) ³ 800 (240-1760) (Br) ⁹ 28 (20-112) (Br) industry ⁹
CH³I	5° 6°	1.7-2.2 (I) ^b 4.8 (I) ^f	120-160 (I) ^c 214 (I) ^f	90-450 (I) ⁴ 272 (I) total ¹⁰ 191 (I) net ocean (incl. 66 anthropogenic) ¹⁰ 180 (I) open ocean ^{15,h}
C ₂ H ₅ I CH₂CII	4 ^a 0.1 ^a	0.5 (I)	46 (I) ^e	95 (I) open ocean ^{15,h} 27 (Cl) open ocean ^{15,h}
CH ₂ Cl ₂	140° 180°, °	83-250 (Cl) ^b 250 (Cl) ⁶	220-650 (Cl) ^c 650 (Cl) ^c 500 (Cl) ^{c,d}	487 (Cl) industrial ⁵ 160 (Cl) ocean 49 (Cl) biomass burning ^{16,i}
CHCl ₃	150° 183 ⁷ ¢	66-130 (Cl) ^b 210 (Cl) ⁷	160-320 (CI) ^e 511 (CI) ^e 470 (350-600) ^{7,e} 412 (CI) ^{6,d}	564 (Cl) ⁶ 588 (392-784) (Cl) ¹¹ 320 (240-400) (Cl) seawater ¹¹ 196 (107-285) (Cl) soil ¹¹
C₂HCl₃	4.6 ^a 5.5 ^{6,c}	3.1 (Cl) ^b 5.30 (Cl) ⁶	260 (C1) ⁶ 440 (C1) ⁶ 350 (C1) ⁶ , ⁶	95 (Cl) industry ⁵ 20 (Cl) ocean ⁶ 3 (Cl) fossil fuel ⁶
C ₂ Cl ₄	99 ^a 133 ⁶ ¢	17-85 (Cl) ^b 160 (Cl) ⁶	63-310 (Cl) ^e 590 (Cl) ^e 440 (Cl) ^{6,e}	313 (Cl) industry ⁵ 16 (Cl) ocean ⁶ 2 (Cl) fossil fuel ⁶
C₂H₅Cl	$\sim 30^{13}$ $\sim 24^{14}$	14 (Cl) ¹³ 4.6-7.3 (Cl) ¹⁴	165 (Cl) ^e 70-110 (Cl) ^e	222 (210-235) (Cl) ^{12g}
CH ₂ ClCH ₂ C		5-26 (Cl) ^b	26-130 (Cl)°	7008

QuickTime™ and a TIFF (Uncompressed) decompressor are needed to see this picture.

Table 2-2. Reported mixing ratios of VSL source gases in the troposphere (global and hemispheric values), at 10 km in the tropics, and best estimates from this Assessment of median mixing ratios in the tropical marine boundary layer [MBL] (<1 km), and tropical upper troposphere [UT]. All mixing ratio values are in parts per trillion (ppt). New information since WMO (2003) is indicated in boldface.

Species	Reported Tropospheric Mixing Ratio *	Reported 10-km Tropical Mixing Ratio ^a	Estimated Tropical [MBL] Mixing Ratio and Range	Estimated Tropical [UT] Mixing Ratio and Range	Estimated Ratio of Tropical [UT]/[MBL]
CH ₂ BrCl			0.47 (0.38-0.59)*	0.32 (0.26-0.35)°	0.7
CH ₂ Br ₂	0.8-3.4	0.6-0.9	1.1 (0.7-1.5)b,c,f	0.9 (0.7-1.0)bcs	0.8
CHBr ₂ Cl	0.1-0.5	0.04-0.11	0.30 (0.06-0.76) ^{b,g,i}	0.08 (0.03-0.12)b,c	0.3
CHBrCl ₂	0.12-0.6	0.04-0.11	0.33 (0.14-0.91)b,c,g,j	0.12 (0.05-0.15)b,c	0.4
CHBr ₃	0.6-3.0	0.4-0.6	1.6 (0.5-2.4)b,c,Cg	0.37 (0.13-0.7) ^{bes}	0.2
CH₃I CH₂CII	0.1-2.0	0.05-0.2	0.8 (0.3-1.9) ^{b,e,f} 0.35 ^g	0.08 (0.02-0.18) ^{b,c}	0.1
CH ₂ Cl ₂ CHCl ₃	NH, 10-15		17.5 (9-39)bef	13.2 (9-19)b,c,e	0.75
,	12.4 (9.8-14.5) ^k SH, 5-7	3.1 ±0.7	7.8 (5.2-13.3) ^{b,c,f,k}	6.0 (4.8-7.5) ^{bes}	0.78
C ₂ HCl ₃	8.0 (6.5-9.1) ^k NH, 1-5 SH, 0.01-0.1	0-0.1	0.5 (0.05-2) ^{b,c,d}	0.14 (0.02-0.3) ^{b,c,d,e}	0.3
C ₂ Cl ₄	NH, 5-15 5.3 (3.3-7.3) ^k SH, 0.7-1.5	1-3	1.8 (1.2-3.8) ^{b,c,Ck}	1.3 (0.9-1.6) ^{b,e,e}	0.7
C ₂ H ₅ Cl	1.5 (1.1-1.6) ^k NH, 2.6 ^l SH, 1.6 ^l		5.0 (2.7-5.9) ^d	1.5 (1.0-1.8) ^d	0.3
CH ₂ ClCH ₂ Cl	NH, 20-40 SH, 5-7	14.9 ±1.1	3.7 (0.7-14.5) ^{b,c,b}	1.8 (0.7-3.3) ^{b,c,e,b}	0.5
COCl ₂				22.5 (20-25) ^m	
Total Cl			81 (75-99) ⁿ	55 (52-60)n,o	
Total Br			8.4 (6.9-9.6) ^a	3.5 (3.1-4.0) ⁿ	
Total I			1.2 (0.7-2.3) ^a	0.08 (0.02-0.18) ⁿ	