

- Hydrology: resolve upper-soil moisture variability issue
- Snow: SCF, SBF, snow age, vertically resolved heating
- Urban model
- Fine mesh high resolution land and downscaling
- Integration of CLM-CN with CLM-DGVM
- Ice sheet model
- Organic soil / deeper soil column / bedrock
- Irrigation (dynamic crops?)
- Roughness length, sparse and dense canopies
- Shrub vegetation type in DGVM
- Modified Richard's equation
- Dynamic wetlands (lakes)
- Prognostic canopy airspace

- Hydrology: resolve upper-soil moisture variability
- Snow: SCF, SBF, snow age, vertically resolved heating
- Urban model
- Fine mesh high resolution land and downscaling
- Integration of CLM-CN with CLM-DGVM
- Ice sheet model
- Organic soil / deeper soil column / bedrock
- Irrigation (dynamic crops?)
- Roughness length, sparse and dense canopies
- Shrub vegetation type in DGVM
- Modified Richard's equation
- Dynamic wetlands (lakes)
- Prognostic canopy airspace

Interannual variability: July (1948-2004)

Soil w

CLM3

Ground Water

CLM3.5

Computed from 1948-2004 monthly soil water

Land-atmosphere coupling strength: Influence of soil moisture on climate

Globally averaged $\Delta\Omega$

TLake T

Ground Water

- Organic soil / deeper soil column / bedrock
 - D. Lawrence; A. Slater, CIRES; V. Romanovsky, U. Alaska
 - Improved soil temperature, permafrost simulation

CLM soil carbon density dataset Source data from Global Soil Data Task

Thermal and hydraulic parameters for organic soil

Soil type	λ_{sat}	λ _{dry}	$\Theta_{\rm sat}$	k _{sat}
Sand	3.12	0.27	0.37	0.023
Clay	1.78	0.20	0.46	0.002
Peat	0.55	0.05 ^a	0.9 ^{a,b}	0.100 ^b

 $f_{sc,i} = \rho_{sc,i} / \rho_{peat} \quad \text{fraction of layer } i \text{ that is organic matter}$ $\Theta_{sat,i} = (1 - f_{sc,i}) (0.489 - 0.00126 \% \text{sand}_i) + f_{sc,i} \Theta_{sat,sc}$

 λ_{sat} sat. thermal conductivity λ_{dry} dry thermal conductivity

 $\Theta_{sat} \quad \text{volumetric water at saturation} \\ \mathbf{k}_{sat} \quad \text{sat. hydraulic conductivity}$

^a Farouki (1981), ^b Letts et al. (2000)

Annual cycle-depth soil temperature plots Siberia

Ground Water

- Organic soil / deeper soil column / bedrock
 D. Lawrence; A. Slater, CIRES; V. Romanovsky, U. Alaska
 - Improved soil temperature, permafrost simulation
 - Can be integrated with CLM-CN for 'dynamic' characterization of physical soil properties

- Irrigation S. Levis; B. Sacks, U. Wisconsin; L. Yang, U. Texas
 - Status: research and development, identify 'best' implementation
 - Issues include source of water, spatial distribution of irrigation, how much water, time of day to irrigate, irrigate on separate landunit/column for crops
 - Dynamic crops?

Land Model Working Group Development Activities

- Wetlands in CLM S. Swenson, D. Lawrence, NCAR

• MODIS derived land cover, essentially no wetlands

Frey et al. 2007

- Dynamic wetlands (lakes) S. Swenson, D. Lawrence, NCAR
 - MODIS derived land cover, essentially no wetlands
 - Building block for dynamic methane sources
 - Status: Research phase ... can fraction water table at surface be exploited

- Shrub vegetation type in DGVM X. Zeng, M. Barlage, U. Arizona

W(rite) - 16-member ensemble forced with June 1 initial conditions from each year of a 16-year climatological SST control run. Soil moisture from W1 experiment recorded at each timestep.

S(oil moisture) - 16-member ensemble where, at every timestep, simulated soil moisture is discarded and replaced with values from W1 experiment.

