Thermohaline Circulation Stability: A Dynamical Systems Point of View

Wilbert Weijer

Operated by Los Alamos National Security, LLC for NNSA

UNCLASSIFIED

THC stability

- THC stability largely determined by equilibrium structure
- Important questions:
 - Is the current THC in, or close to, a regime of multiple equilibria?
 - If so, what would it take to "shut down" THC?

UNCLASSIFIED

- Equilibrium structure reasonably well understood in qualitative sense
- Large quantitative differences between models

UNCLASSIFIED

Slide 3

Hysteresis diagrams reflect underlying equilibrium structure

- L₂ determined by freshwater balance of the Atlantic:
 - Mono-stable if THC salinifies

- L₂ determined by freshwater balance of the Atlantic:
 - Mono-stable if THC salinifies
 - Bi-stable if THC freshens

UNCLASSIFIED

- L₂ determined by freshwater balance of the Atlantic:
 - Mono-stable if THC salinifies
 - Bi-stable if THC freshens
- Inversion studies (e.g., Weijer 1999):
 - $F_{35S} = +7.0 \text{ Gg/s} \Rightarrow \text{THC freshens} \Rightarrow \text{bi-stable regime!}$

UNCLASSIFIED

- L₁ diagnosed by buoyancy budget of the Atlantic?
- Rahmstorf (1996) model:

$$\beta$$
 S₀ F_{crit} = 1/4 k ($\alpha \Delta$ T)² = ½ α Q/ ρ C_p

- Buoyancy gain by freshening of THC = half buoyancy loss by cooling
- Inversion study:
 - $Q_{35S} = 0.63 \text{ PW} \Rightarrow B^{T} = 3.2 \text{ x } 10^{7} \text{ kg/s}$
 - $F_{35S} = 7.0 \text{ Gg/s} \implies B^S = -0.5 \times 10^7 \text{ kg/s}$

UNCLASSIFIED

If in multiple-equilibria regime, what is the critical period t_{crit} of a given perturbation that will trigger a THC collapse?

Operated by Los Alamos National Security, LLC for NNSA

UNCLASSIFIED

• Start from $\gamma_p = 0.15$ Sv

• Apply perturbation: $\gamma_p = 0.23$ Sv for $t_m = infinity$

UNCLASSIFIED

• Apply perturbation: $\gamma_p = 0.23$ Sv for $t_m = infinity$

UNCLASSIFIED

Slide 13

• Apply perturbation: $\gamma_p = 0.23$ Sv for $t_m < t_{crit}$

UNCLASSIFIED

• Apply perturbation: $\gamma_p = 0.23$ Sv for $t_m < t_{crit}$

UNCLASSIFIED

Slide 15

• Apply perturbation: $\gamma_p = 0.23$ Sv for $t_m > t_{crit}$

UNCLASSIFIED

Slide 16

• Apply perturbation: $\gamma_p = 0.23$ Sv for $t_m > t_{crit}$

UNCLASSIFIED

Slide 17

- Unstable equilibrium C is on separatrix of basins of attraction of B and D
- Define "distance" between transient state and equilibria B, C and D as an energy functional: E_i = < (ρ_i ρ)² >
- Calculate E_i for transition from B to E

Operated by Los Alamos National Security, LLC for NNSA

Minimum distance with respect to unstable equilibrium C: 250 years

Operated by Los Alamos National Security, LLC for NNSA

Conclusions

- THC stability determined by equilibrium structure
- Limit points
 - Limit point 2 determined by freshwater balance (surface plus wind-driven)
 - Can limit point 1 be diagnosed by buoyancy budget?

Transient perturbation threshold

- Critical duration of perturbation can be diagnosed by tendency of energy functional
- Just one integration necessary, provided that all (including unstable!) equilibria are known

UNCLASSIFIED

Slide 20

