Initial results and performance of the GFDL Cubed-Sphere Model

Bruce Wyman¹, Shian-Jiann Lin¹, William Putnam², Michael Herzog³, Chris Kerr³, Jeff Durachta⁴, Zhi Liang⁴, V. Balaji⁵, Isaac Held¹

¹ NOAA/Geophysical Fluid Dynamic Laboratory

² NASA/Goddard Space Flight Center

³ UCAR Visiting Scientist (currently at GFDL)

⁴ RS Information Systems (currently at GFDL)

⁵ AOS Program, Princeton University

Outline

- Key Features
 - Algorithm Improvements
- Implementation Issues
- Initial Results
 - Hydrostatic (APE, AMIP)
 - Computational performance and scaling
 - Non-hydrostatic
- Future Plans

Key Features

One Model Two Configurations

- 1. Hydrostatic version developed from the well-known FV dynamical core
 - Several improvements/modifications for the cubed-sphere
 - This version is currently working well

2. Non-hydrostatic version

- Simple switch between hydrostatic and non-hydrostatic versions hydrostatic = .false.
- Easy transition from hydrostatic to non-hydrostatic
- Non-hydrostatic code is completely independent from the hydrostatic code.
- 30-50% more expensive than the hydrostatic version at the 4-5 km resolution

Review of the FV dynamical core

- Conservative, monotonic, flux-form semi-Lagrangian transport for all prognostic variables (*Lin and Rood 1996, MWR*).
- Consistent transport of air mass and absolute vorticity, resulting in a superior transport of the potential vorticity (*Lin and Rood 1997, QJRMS*).
- Finite-volume integration of the pressure gradient forces to more accurately handle steep terrains (*Lin 1997, QJRMS*).
- "Vertically Lagrangian" control-volume discretization with mass, momentum, and total energy conserving re-mapping algorithm (*Lin 2004, MWR*).

Algorithm Improvements

Generalization to non-orthogonal curvilinear coordinate

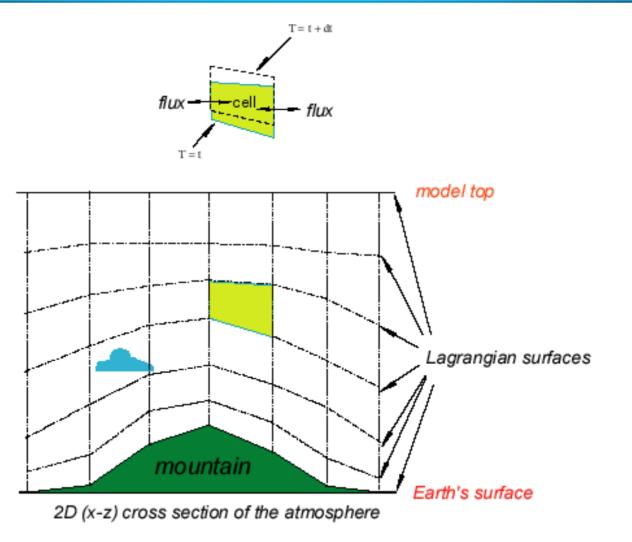
Horizontal transport scheme

- fully monotonic for all transported variables (using the same inner and outer 1D operator enhanced stability but slightly more expensive)
- edges between the 6 faces of the cube are correctly treated as discontinuity
- 4th order interpolation of the winds from D to C grid
- The vertical remapping
 - one-sided extrapolation at the bottom surface and at the model top using cubic polynomials that is coupled with the interior PPM sub-grid reconstruction scheme -less numerical damping.
 - Geopotential conserving remapping by remapping virtual temperature using log(p) remapping is exact if the virtual temperature profile can be locally represented by piecewise parabolic polynomials.

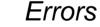
Communication

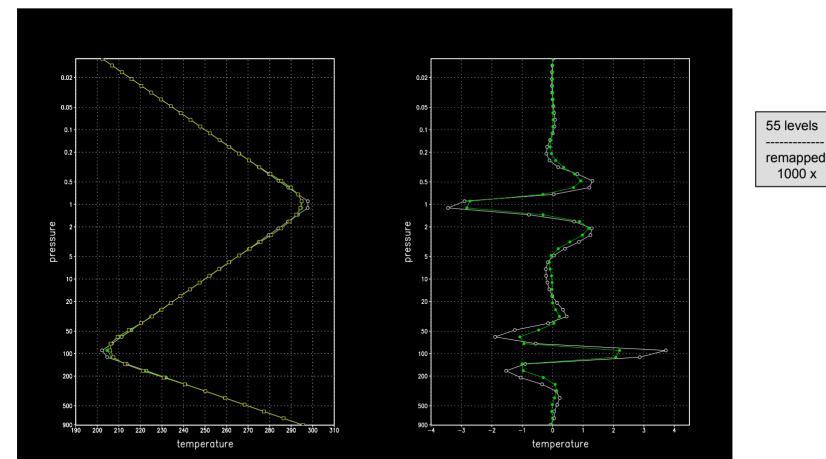
 pure message passing; communication moved to the outer levels of the code; code is much cleaner and simpler; many OPENMP directives remain but are inactive

Lagrangian Riemann Solver for vertically propagating soundwaves


- Lin 2007, QJRMS, in revision

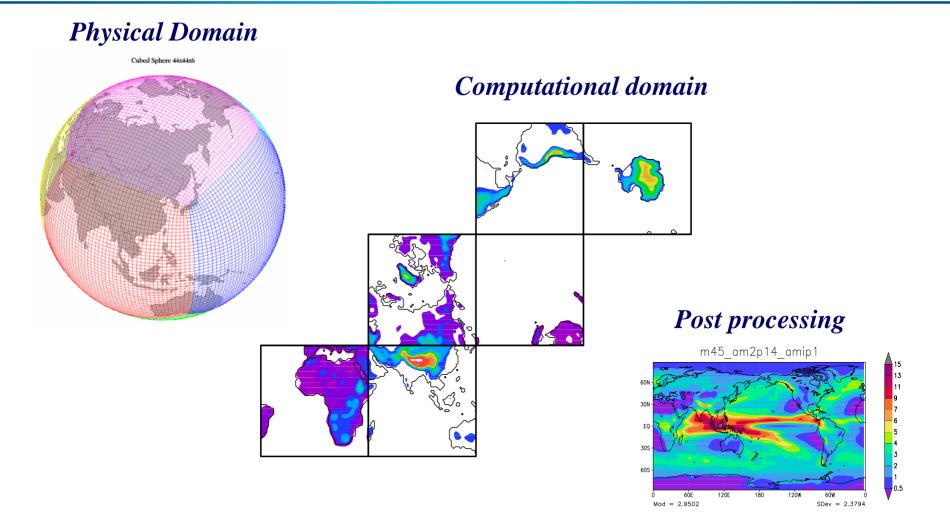
Vertically Lagrangian Control-Volume Discretization





Improved Remapping

Temperature profiles



Three ways to look at the cubed-sphere

Implementation Issues

Cubed-sphere grid choice

- Gnomonic grid; analytic solution
- Spring-dynamics with torsion spring; less distortion at edges and corners

Land Model Grid

- Cubed-Sphere vs. Latitude-Longitude grid?
- River routing

• Coupling software/exchange grid (3 step approach)

- 1. By-pass coupler for AMIP runs (all models use the cubed-sphere grid)
- 2. CS atmos; LL land; tri-polar ocean and ice models
- 3. CS atmos and land; tri-polar ocean and ice models (final configuration)

Input data sets

- Online lat-lon to cubed-sphere conservative interpolation

Diagnostics and post-processing (output data)

- Cubed-sphere to lat-lon interpolation

Cubed-sphere grid choices

Gnomonic grid choices compared with lat-lon and Yin-Yang grids.

Grid scheme	Aspect ratio: $\Delta_{MAX} / \Delta_{MIN}$		
	Global grid	Local grid box	
Lat-Lon	N	N	
Equal distance (Sadourny 1972)	~2	~1.4	
Equal angle (Ronchi et al. 1996)	~1.4	~1.4	
True equal-distance Gnomonic	~1.4	~1.06	
Yin-Yang	~1.4	~1.4	

FMS Coupler Overview

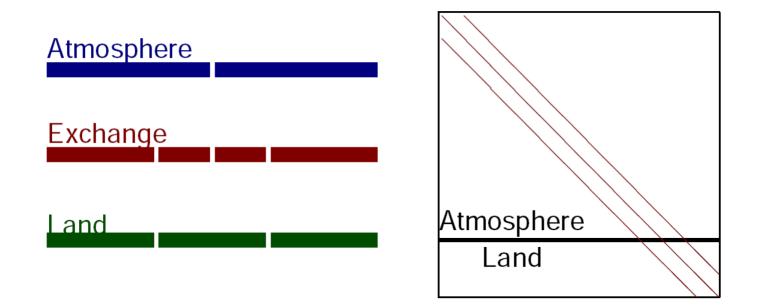
Used for data exchange between models. Key features include:

- **Conservation:** Required for long runs.
- **Resolution:** No constraints on component model time steps and spatial grid. Supports both explicit and implicit time stepping.
- Exchange grid: Union of component model grids, where detailed flux computations are performed (Monin-Obukhov, tridiagonal solver for implicit diffusion, ...)
- **Fully parallel:** Calls are entirely processor-local: exchange software will perform all inter-processor communication.
- **Single executable:** Serial and concurrent execution in a single executable.
- **Highly efficient**: Currently able to couple atmosphere/ocean explicitly at each ocean time step; atmosphere/land/ice implicitly at each atmospheric time step.

FMS Coupler Overview

Used for data exchange between models. Key features include:

- **Conservation:** Required for long runs.
- **Resolution:** No constraints on component model time steps and spatial grid. Supports both explicit and implicit time stepping.
- **Exchange grid:** Union of component model grids, where detailed flux computations are performed (Monin-Obukhov, tridiagonal solver for implicit diffusion, ...)
- **Fully parallel:** Calls are entirely processor-local: exchange software will perform all inter-processor communication.
- **Single executable:** Serial and concurrent execution in a single executable.
- **Highly efficient**: Currently able to couple atmosphere/ocean explicitly at each ocean time step; atmosphere/land/ice implicitly at each atmospheric time step.



Implicit coupling and the exchange grid

Union of component model grids, where detailed flux computations are performed.

FMS Coupler: Cubed-Sphere

The fundamentals of the exchange grid do not change as we move to the cubed sphere grid. However, there are some software issues that we are dealing with.

- New grid specification to accommodate multi-tile grids (mosaics)
- Exchange grid generation needs to handle multiple cubed-sphere grids (Atmosphere and Land)
 - Software originally assumed one of the grids was lat-lon
- Second-order conservative interpolation
- Exchange grid size will be larger
 - Load balancing; communication costs
 - Code needs to be very efficient

• Earth System Model (ESM) will exchange even more tracers

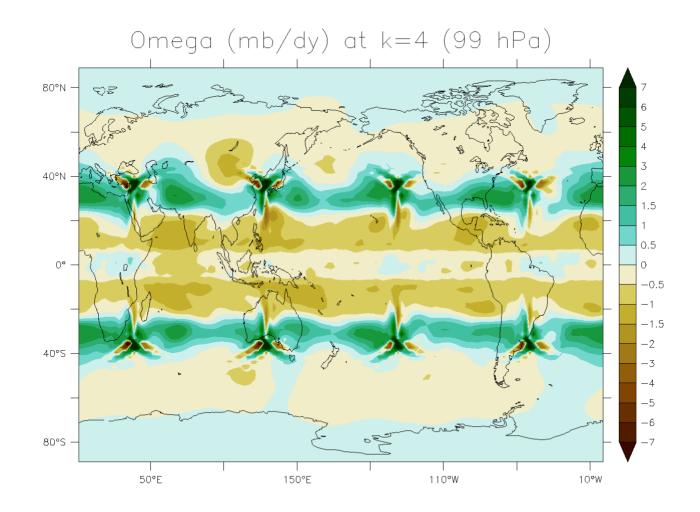
Need for efficient code even greater

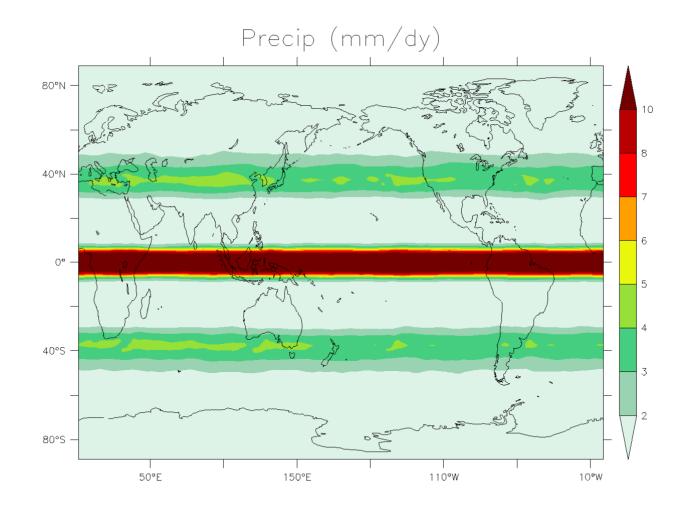
Initial Tests (Hydrostatic Model)

Aqua-planet runs

- Neale and Hoskins (2001)
- Specified zonally symmetric SST (Control case #1)
- Diurnal radiation with NO annual cycle
- Radiative gases held constant or turned off
- AM2 physics
- No coupling software
- Good for identifying problems at the corners
- Examine 3 year annual averages

AM2 Physics (J. of Climate, Dec. 2004)


- **Radiation:** Diurnal cycle with full radiation calculation every 3 h; effects of H2O, CO2, O3, O2, N2O, CH4, and four halocarbons included. **Longwave:** Simplified exchange approximation (Schwarzkopf and Ramaswamy 1999); Clough et al. (1992) CKD 2.1 H2O continuum parameterization. **Shortwave:** Exponential sum fit with 18 bands (Freidenreich and Ramaswamy 1999); liquid cloud radiative properties from Slingo (1989); ice cloud radiative properties from Fu and Liou (1993).
- **Aerosols:** Prescribed monthly three-dimensional climatology from chemical transport models; species represented include sulfate, hydrophilic, and hydrophobic carbon, dust, and sea salt.
- **Clouds:** Three prognostic tracers; cloud liquid, cloud ice, and cloud fraction; cloud microphysics from Rotstayn (1997) and cloud macrophysics from Tiedtke (1993).
- **Convection Relaxed Arakawa–Schubert:** From Moorthi and Suarez (1992); Detrainment of cloud liquid, ice, and fraction from convective updrafts into stratiform clouds; a lower bound imposed on lateral entrainment rates for deep convective updrafts (Tokioka et al. 1988); convective momentum transport represented by vertical diffusion proportional to the cumulus mass flux.
- Vertical diffusion: Surface and stratocumulus convective layers represented by a K-profile scheme with prescribed entrainment rates (Lock et al. 2000); surface fluxes from Monin–Obukhov similarity theory; gustiness enhancement to wind speed used in surface flux calculations (Beljaars 1995); enhanced near-surface mixing in stable conditions; orographic roughness effects included.
- Gravity wave drag: Orographic drag from Stern and Pierrehumbert (1988)
- Land model: Isothermal surface (soil-snow-vegetation); three water stores: snow, root zone, and ground water; 18 soil temperature levels to 6-m total depth; stomatal control of evapotranspiration; latent heat storage in soil; surface parameters dependent on eight soil and eight vegetation types


C44 Aqua-planet experiment

C44 Aqua-planet experiment

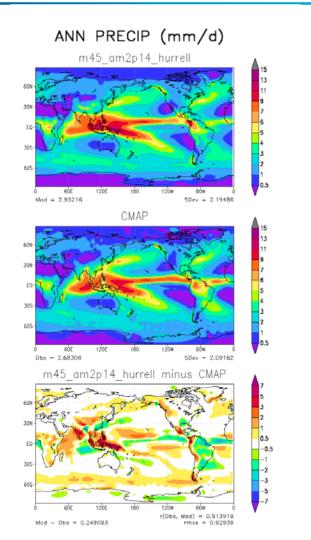
12th Annual CCSM Workshop, June 19-21, 2007

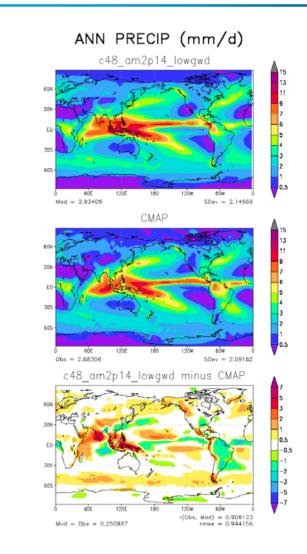
Initial Tests (Hydrostatic Model)

• AMIP runs

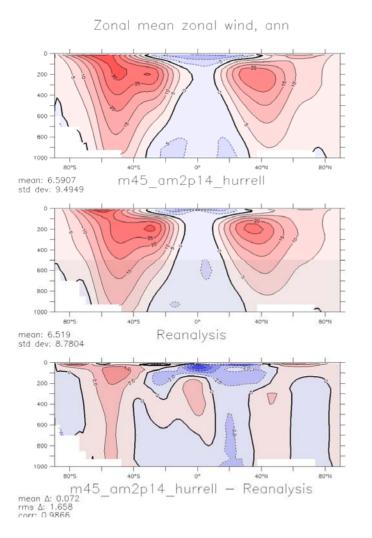
- Same as AM2p14 except ...
 - All component models are on the cubed-sphere No exchange grid (coupling software)

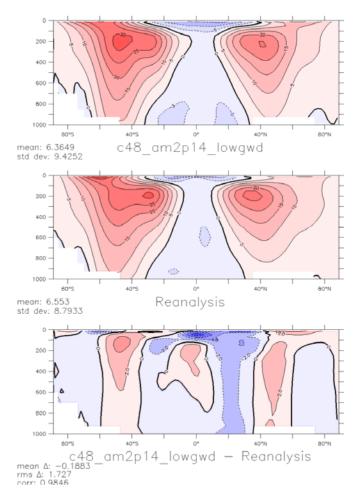
• C48 L24


- Each face has 48x48 points; approx. 2 degree resolution
 Similar horizontal resolution to AM2p14 (M45)
- Same vertical resolution as AM2
- 21 year integration: 1980-2000 (Hurrell SST/ICE)
- Several integrations completed at C64 and C90

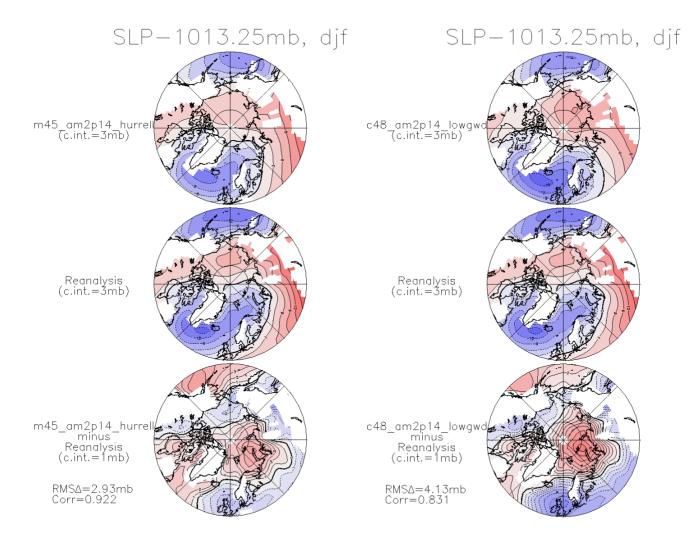


AMIP Results





AMIP Results


Zonal mean zonal wind, ann

AMIP Results

Comments on the cubed-sphere

• Arctic climate

Will it improve with higher horizontal resolution? How much improvement can be gained with tuning GWD?

Coupler/exchange grid overhead

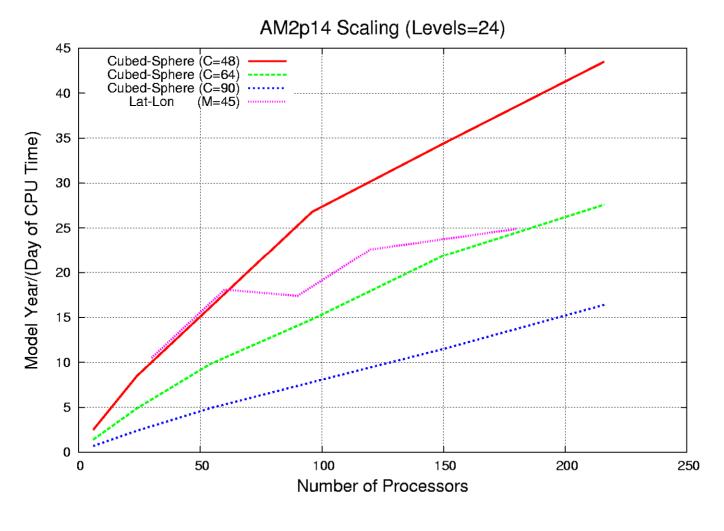
More exchange grid cells and more communication. Earth system model exchanges many more tracers. Diagnostics of quantities on the exchange grid may also be costly. Possible solution: Perform many *puts/gets* with the exchange grid at a time.

• Post-processing: Cube to Lat-Lon

Integration with the GFDL post-processing software. Interpolation to standard pressure levels should be done on the cubed-sphere grid.

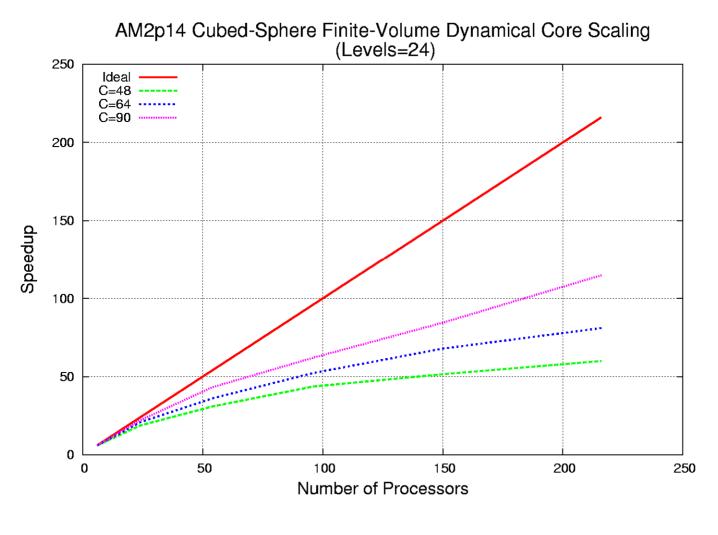
Interpolation of input data sets

High-resolution lat-lon to cubed-sphere is very costly. Move some online interpolation to offline?

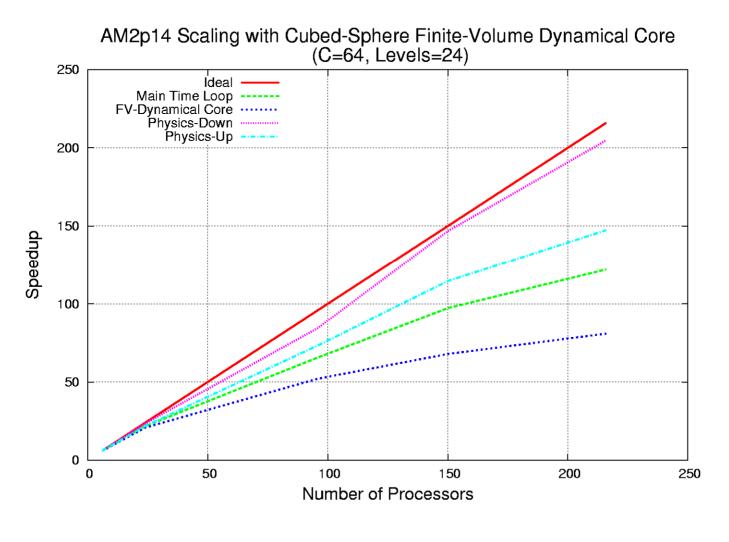

Scaling

Will the benefits of scaling out weight the issues above?

Scaling of AMIP runs



12th Annual CCSM Workshop, June 19-21, 2007


Scaling of the dynamical core

Scaling of C64 AMIP run

Vertically Lagrangian Non-Hydrostatic FV Core

$$\frac{\partial}{\partial t} \delta p^* + \nabla_h \cdot \left[\vec{V} \delta p^* \right] = 0$$

$$\frac{\partial}{\partial t} (\Theta \delta p^*) + \nabla_h \cdot \left[\vec{V} \Theta \delta p^* \right] = 0$$

$$\frac{\partial}{\partial t} (\Theta \delta p^*) + \nabla_h \cdot \left[\vec{V} \Theta \delta p^* \right] = 0$$

$$\frac{\partial}{\partial t} u - \Omega \tilde{v} \sin \alpha + \frac{\partial}{\partial x} \left(\frac{\tilde{u}u + \tilde{v}v}{2} \right) = \frac{\partial \Phi}{\partial p^*} \left[\frac{\partial p}{\partial x} \right]_z = \frac{\partial \Phi}{\partial p^*} \left[\frac{\partial p'}{\partial x} \right]_z + \frac{\partial \Phi}{\delta \pi^*} \left[\frac{\partial \pi^*}{\partial x} \right]_z$$

$$\frac{\partial}{\partial t} v + \Omega \tilde{u} \sin \alpha + \frac{\partial}{\partial y} \left(\frac{\tilde{u}u + \tilde{v}v}{2} \right) = \frac{\partial \Phi}{\partial p^*} \left[\frac{\partial p}{\partial y} \right]_z = \frac{\partial \Phi}{\partial p^*} \left[\frac{\partial p'}{\partial y} \right]_z + \frac{\partial \Phi}{\delta \pi^*} \left[\frac{\partial \pi^*}{\partial y} \right]_z$$

$$\frac{\partial}{\partial t} (w \delta p^*) + \nabla_h \cdot \left[\vec{V} w \delta p^* \right] = g \delta p'$$

$$\delta m = \delta p^* / g = -\rho \delta z$$

$$p = p^* + p'$$

$$\frac{\partial}{\partial t} \delta z + \delta \left[\vec{V} \cdot \nabla_h z \right] = \delta w$$

$$hydrostatic$$

$$\delta z = \frac{1}{g} C_p \Theta \delta \pi^*$$

[A Riemann solver is used for the non-hydrostatic adjustment]

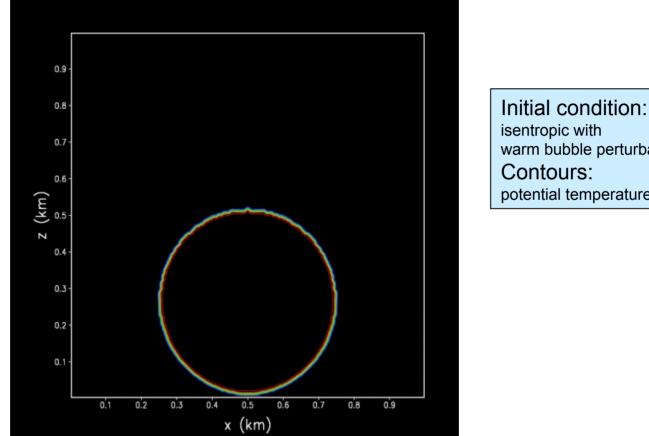
Lagrangian Riemann solver versus semi-implicit finite differencing

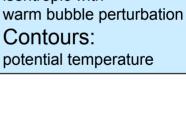
Advantages

- Acoustic waves are treated more accurately.
- No staggering of prognostic variables is necessary. The exact Riemann solver provides, in effect, an analytic way of staggering for pressure gradient computation.
- Computationally more efficient at cloud-resolving scales

Disadvantages

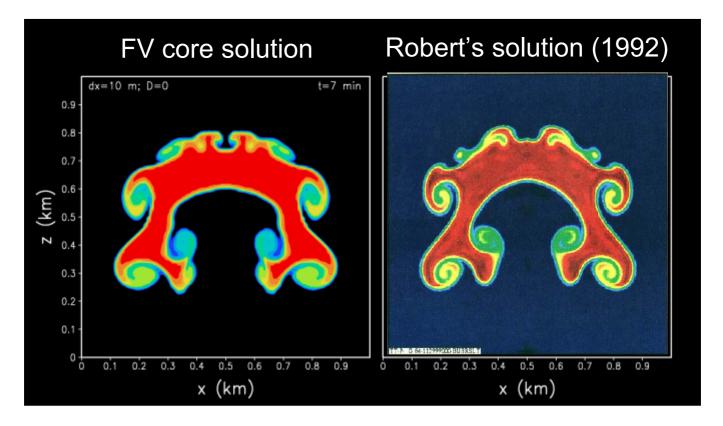
- There is a physical limit on the size of the time; sub-cycling becomes necessary if the resolution is near the hydrostatic regime (~10km and beyond). Therefore, it is slower than semi-implicit algorithm for hydrostatic scales.
- Not applicable for Eulerian coordinate systems.





Non-hydrostatic test case

Warm bubble experiment (Robert 1992): $\Delta x = \Delta z = 5m$, D=0.1, $\Delta t = 0.1s$



Non-hydrostatic test case

Warm bubble (Robert 1992)

Global Non-Hydrostatic Core

- Test cases run at C1000 and C2000
 - C2000 is approximately 4-5 km resolution
 - Jablonowski & Williamson (2006) with 4 tracers
- 864 processors used on the GFDL SGI Altix 4700
 - computational domain on a single processor of
 ~ 167 x 167 x 26 points

Global Non-Hydrostatic Core

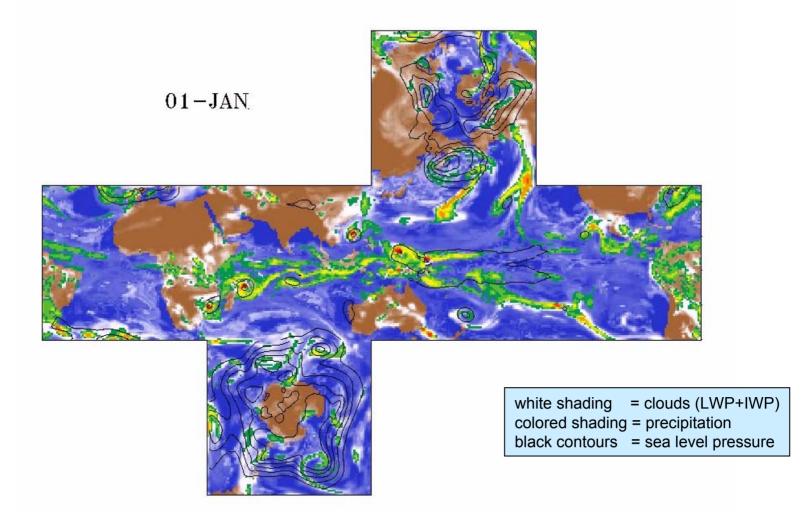
Performance at various horizontal resolutions

Model	Grid size (km)	Physics & remapping time step (seconds)	2D Lagrangian dynamics time step (seconds)	Riemann solver time step (seconds)	Throughput (days/day)
C720 26L	10.9~15.4	360	15	5	~64*
C1000 26L	7.8~11.1	240	12	4	~32
C2000 26L	3.9~5.5	120	6	3	~4.2

Global Non-Hydrostatic Core

Timing breakdown for C2000 resolution (1 day run)

Total (seconds)	20265.8	100%
Horizontal Advection (20 sub-cycles within the Lagrangian dynamics)	7463.4	36.8
Riemann Solver (3 sub-cycles per small step)	7411.1	36.6
Message Passing	1410.4	7.0
Lagrangian to Eulerian Remapping	1093.74	5.4
Pressure gradients (C+D core)	680.7	3.4
Tracer advection (large-time-step)	544.3	2.2
Others (initialization, diagnostics, etc.)	1662.2	8.4


Future Plans

- Incorporate into AM3 (our next AM)
- Doubly-periodic limited-area model
 - Test bed for physics, import cloud micro-physics
- Global high-resolution hydrostatic model
 C360 (¼°), AMIP mode, less obtrusive convection
- Global cloud-resolving non-hydrostatic model
 - C2000 (4-5 km), short term forecasts, proof of concept run
- Regional grids and nesting

C90 Movie

