[ Arctic relevant LMWG changes for CLM4

_ Soil hydrology

 Permit supercooled water (CLM3.5)

* Revision of infiltration into/through partially icy soil (CLM3.5)
— Snow model

* snow cover fraction

* snow burial fraction for short vegetation

 Adopt SNICAR (snhow age, vertically resolved heating in
snowpack, aerosol deposition)

e snow compaction
— Organic soil — physical properties (possibly integrate with CN)
— Deeper soil column (~50 m, 15 soil levels)
— Shrub vegetation type in CLM-CNDV (Dynamic vegetation)
— Dynamic wetlands (lakes)
— Methane emission model



Results from Community Snow Project:
Snow Cover Fraction (ANN)
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Results from Community Snow Project:
Surface air temperature (ANN)
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Snow compaction

Snow depth
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Impact: 10-20%
shallower snow pack
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CLM soil carbon density dataset
Source data from Global Soil Data Task
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Annual cycle-depth soil temperature plots
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SOILCARB - CONTROL (JJA)
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Goal is to couple CLM-CN soil carbon with
organic soil parameterization
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2007 - A record year in the Arctic

Western Arctic (Aug to Oct 2007)
warmest on record

+2.3°C over 1978-2006 mean
(preliminary CRU data)

Temperature Anomalies Sep-Nov 2007

(with respect to a 1961-1990 base period)
National Climatic Data Center/NESDIS/NOAA

Image courtesy NSIDC
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Correlation between Sept sea ice extent and western
3 Arctic July to October T_,. (CRU)
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Observed and modeled sea ice extent
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September sea lce extent
anomaly (million km®)

Lagged composite:
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September sea ice extent
anomaly (million km®)
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T, trend:

during sea-1ce loss periods  outside sea-ice loss periods
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* No statistically significant or spatially coherent
trends in P, snow depth, or SW|, P
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Collocation of accelerated warming
with permafrost zones

| T, trend , IPA Permafrost
during sea-ice loss periods Distribution Map
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Idealized CLM forcing scenarios
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Experimental design

e Use CLM3.5 with improved
permafrost dynamics

e Spin up for 400 years with repeat
year 2000 forcing

e Force CLM with idealized scenario
experiments

e Consider only points where
Asnow_depth < 10%



(
[ %]

Beltrami et al. (2002)
estimate avg land heat gain
1950 to 2000 of 70MJ

AMI

Warm Tooi (PT,y =1) Cold

—0.3°C -5.8°C

o Depth, Lqepermafrqset thEIL:me.e

Imo N s +Q.Om | 7
(d) o ZSZSI h:jat conic(;ntvo :O h
“Tle36TMY _' 0: N

f 100}

50 -

+0.41°C




Soil heat accumulation
Warm permafrost case, LINEAR expt
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Y. [ Summary

Periods of rapid sea ice loss in CCSM3 induce a 3.5x increase in
warming trends compared to secular climate-change trends for
western Arctic. This is consistent with 2007 events.

Accelerated warming signal extends up to 1500km inland and is
apparent throughout most of the year, peaking in autumn.

Accelerated warming substantially increases ground heat
accumulation — the earlier the event the greater the long-term
impact.

Enhanced heat accumulation can lead to rapid degradation of
warm permafrost and preconditions colder permafrost for
earlier and/or more rapid degradation.

Accelerated warming is likely to have broader impacts on
vulnerable Arctic ecosystems, biogeochemical cycling,
infrastructure.



Near-surface permafrost degradation
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< Near-surface permafrost distribution in
¥ Community Climate System Model (CCSM3) IPCC AR4 Ensemble
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Potential sources of bias in the CCSM3
permafrost simulation
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1 Soil type - Kdry O, K.,
Sand 3.12 0.27 0.37 [0.023
Clay 1.78 0.20 0.46 |0.002
Peat 0.55 0.052 0.92b 1 0.100°

Ou; = (1-F..)) ( 0.489 - 0.00126 %sand;) + f..; O .

Aot Sat. thermal conductivity O, Volumetric water at saturation

Agry dry thermal conductivity k.t Sat. hydraulic conductivity

a Farouki (1981), ¢ Letts et al. (2000)
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Organic soil layers cool soil temperatures by up to -3°C



Deep permafrost (10-30m)

B 1970-1989
B 2080-2099
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Most deep
permafrost still
exists at the end of
the 21st century



Future Work: Simulating Arctic terrestrial
feedbacks in CCSM
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Future Work

. Simulating Arctic terrestrial

feedbacks in CCSM

CLM-CN (carbon
cycle model):
simulates large
Arctic soil carbon
pool

CLM-DGVM (dynamic
vegetation): recently

Wetland CH,
emission model

added shrub type

Dynamic wetlands,
soil subsidence,

Reduce climate biases -

show model, low clouds,
resolution in boundary layer,
cold region hydrology

thermokarst
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