New Radiation

Andrew Conley¹²,

Mike Iacono¹³, Bill Collins¹², Brian Eaton², Phil Rasch², Francis Vitt², Pat Worley², Jean-Francois Lamarque¹², And Many Others

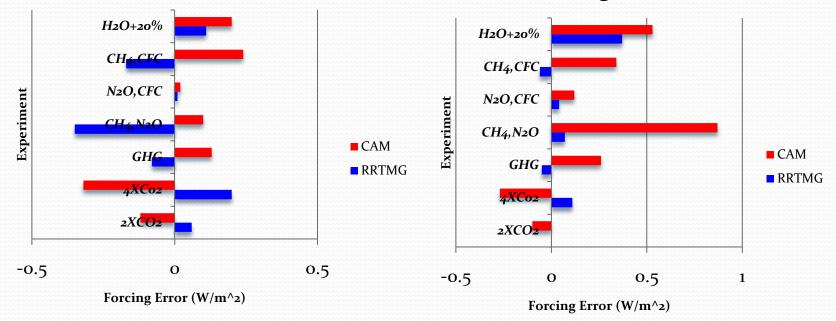
> ¹Supported by DOE/SciDAC ²Supported by NSF/NCAR ³Supported by DOE/ARM

New Radiation Parameterization

- 1. RRTMG A New Radiation Code for CAM
 - Science Tests
 - Integration Tests
- 2. New Interface for Radiative Constituents
- 3. Condensed Phase Optics
 - Clouds
 - Aerosols
- 4. Schedule

CAM Radiation

- Authors:
 - V. Ramanathan
 - Jeff Kiehl
 - Bruce Briegleb
 - Bill Collins
- Supported increasing complexity for 20 years.


RRTMG

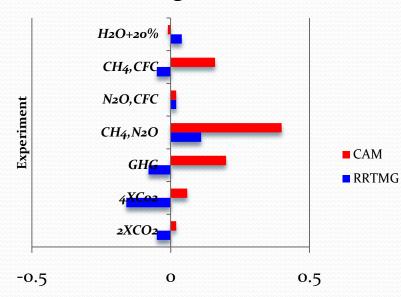
- Correlated-k code for gases in LW and SW from AER
- Monte Carlo Independent Column Approximation for clouds
- Continually updated to latest spectroscopic data bases
- Much greater accuracy relative to LBL calculations
- Ongoing validation in radiative closure experiments (ARM BBHRP)
- Ozone optics validation through CCMVal

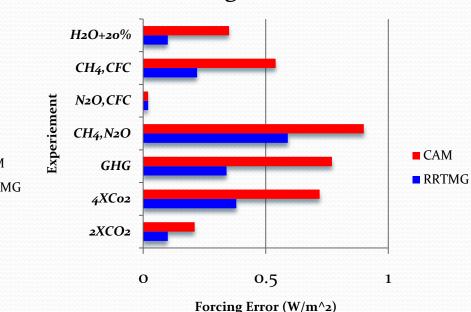
Climate Forcing Accuracy (RTMIP)*

LW Forcing Error: 200 hPa

LW Forcing Error: Surface

LW Benchmark code is LBLRTM.


Experiments:


- GHG :: 1860->2000 (all species)
- *CH*4,*N*2*O* :: o ppm -> 2000
- *N*₂*O*, *CFC* :: 1860 -> 2000
- *CH*4,*CFC* :: 1860 -> 2000

*Collins et al, 2006; Iacono et al 2008

Climate Forcing Accuracy (RTMIP)*

SW Forcing Error: 200 hPa

SW Forcing Error: Surface

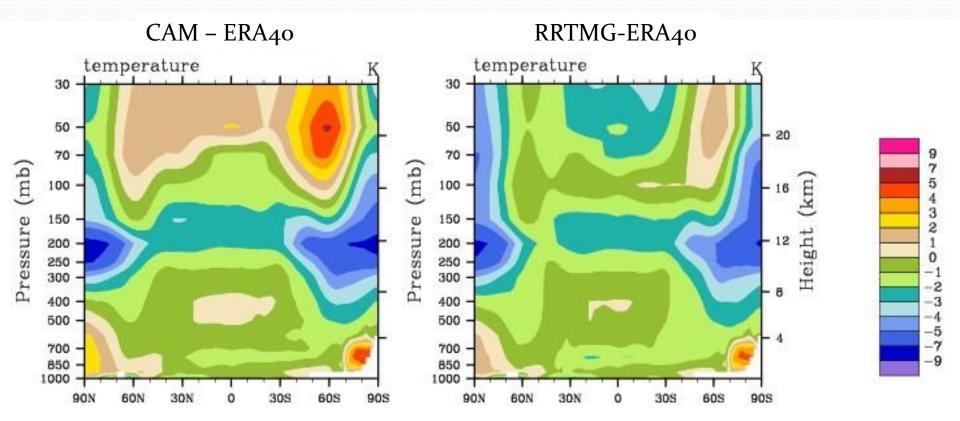
Forcing Error (W/m²)

SW Benchmark code is CHARTS.

Experiments:

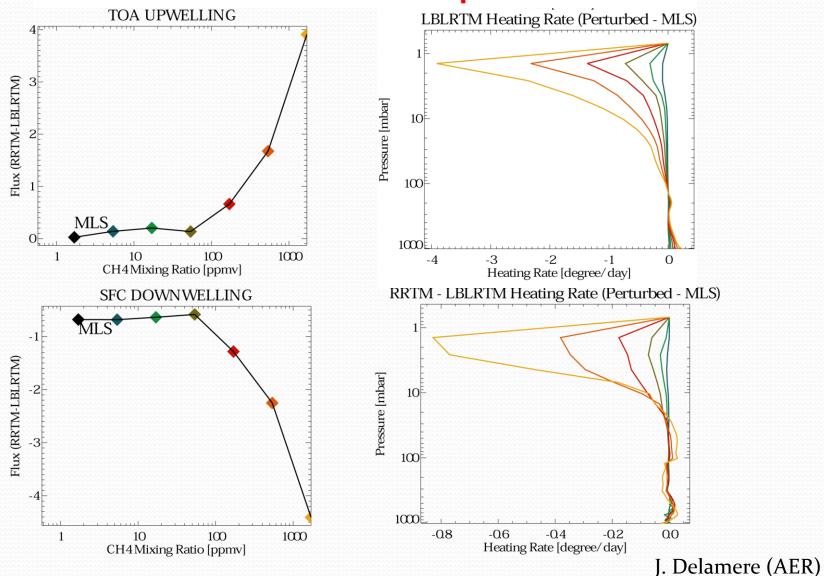
- *GHG* :: 1860->2000 (all species)
- *CH*4,*N*2*O* :: o ppm -> 2000
- N2O, CFC :: 1860 -> 2000
- *CH4*,*CFC* :: 1860 -> 2000

*Collins et al, 2006; Iacono et al 2008

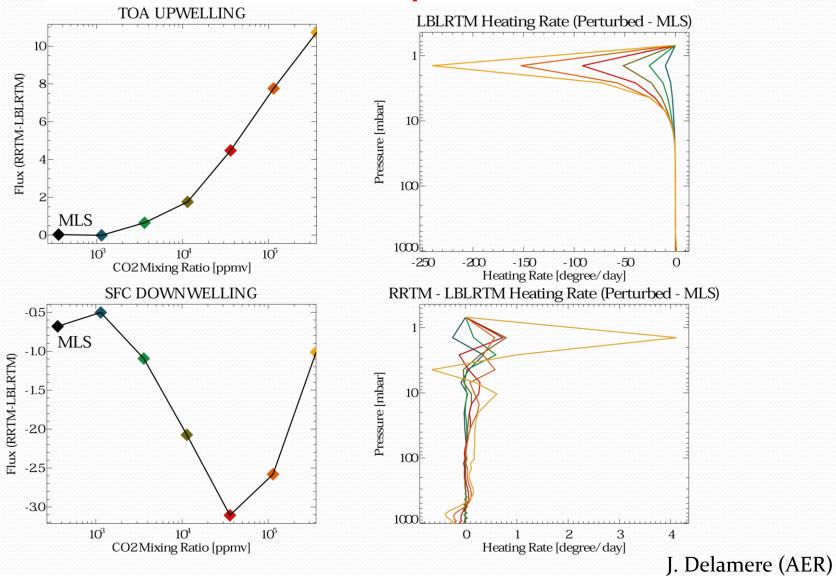

Flux Differences (W/m^2)

Global, 1 yr Means, No Aerosols, RT-coupled, Cloud Bugfix

	Тор	RRTMG-CAM	Surface	RRTMG-CAM
Shortwave	Net Clear Sky	-1.4	Net All Sky	-3.2
	Cloud Force	-1.6		
Longwave	Net Clear Sky	-3.3	Net All Sky	-0.8
	Cloud Force	-3.0		
	NET	-2.7	NET	-2.7


Top: let less solar in, less IR out. Surface: less solar and radiates less IR.

Climate Effects from New Radiation



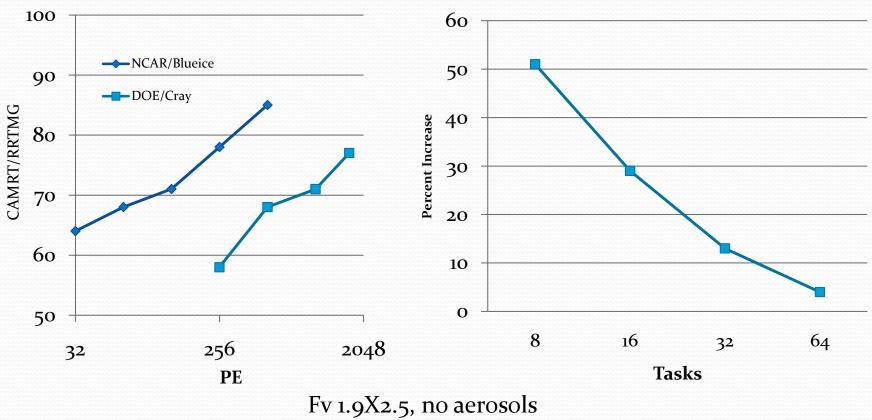
No Aerosols, Old CAM cloud optics, RT coupled See Mike Iacono's Poster!

Methane Atmospheres

CO₂ Atmospheres

Integration Status Condensed Phase Optics

- Liquid Cloud Optics
 - Using CAM3.5 Optics
 - Constructed optics for MG Clouds
 - Implemented 1st cut of MG Cloud Optics
 - Need to include in-cloud liquid variability
- Ice Cloud Optics
 - Have Optics from David Mitchell
 - Need to be implemented and tested
- Aerosol optics not yet integrated with RRTMG


Software Integration Status

- Testing on NCAR machines relatively complete
- Testing ongoing on DOE machines
- Optimizations are ongoing
- Removing CAM-specific elements from RRTMG
- Soon to be part of trunk code as a configuration option

Computational Costs

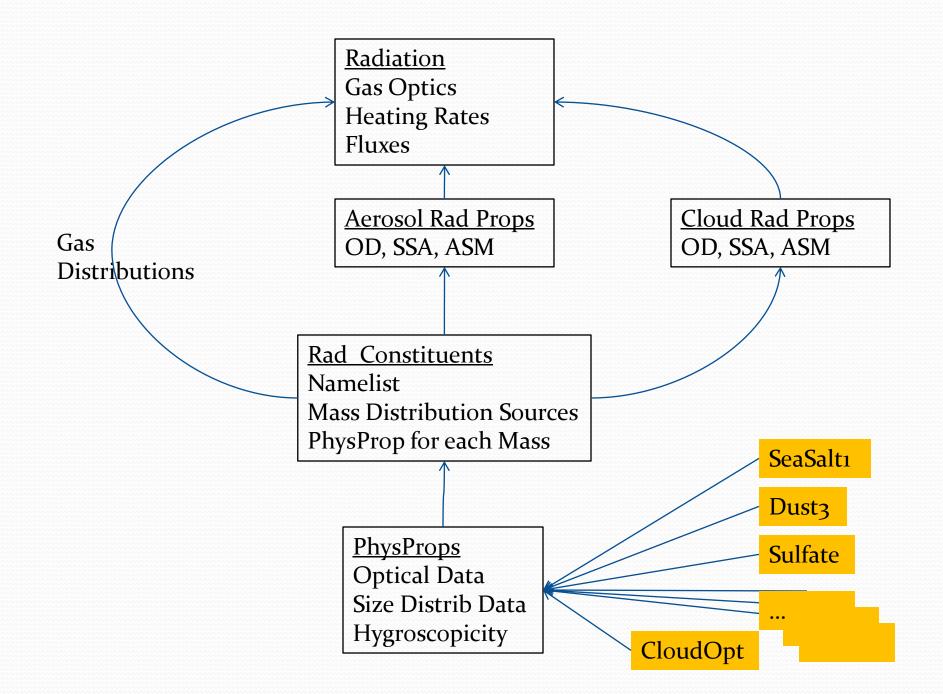
Performance Ratio

*Brian Eaton, Pat Worley

Questions?

1 RRTMG – A New Radiation Code for CAM

- Science Tests
- Integration Tests
- 2. New Interface for Radiative Constituents
- 3. Condensed Phase Optics
 - Clouds
 - Aerosols
- 4. Schedule


Interface for Radiative Constituents

- Implemented for both CAMRT and RRTMG
- Easy Forcing Computation
 - Namelist driven
 - Up to 10 diagnostic calls
 - Supports multiple representations
 - SW and LW
- Explicit specification of radiative constituents nothing hidden
- Declaration of prognostic or diagnostic character of each species
- Explicit link between microphysics and optics of each condensed species
- Doesn't change answers

Example Namelist*

rad_climate="'D_O3:O3', 'D_O2:O2', 'D_CO2:CO2', \ 'D_N2O:N2O', 'D_CH4:CH4', 'D_CFC11:CFC11', \ 'D_CFC12:CFC12', 'P_Q:H2O', \ 'D_ocar1:/path/ocpho.nc', \ 'D_ocar2:/path/ocphi.nc', \ 'D_bcar1:/path/bcpho.nc', \ 'D_bcar2:/path/bcphi.nc' \ 'D_dust1:/path/dustv2b1.nc', \ 'D_dust2:/path/dustv2b2.nc', \ 'D_dust3:/path/dustv2b3.nc', \ $D_dust_2:/path/dust_2b_4.nc', \$ 'D_sulf:/path/sul.nc' "

*Created by build-namelist.

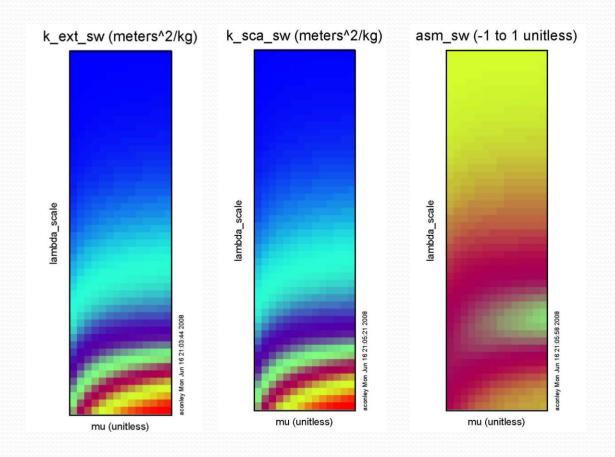
Questions?

1. RRTMG – New Radiation Code for CAM

- Science Tests
- Integration Tests

Q. New Interface for Radiative Constituents

- 3. Condensed Phase Optics
 - Clouds
 - Aerosols
- 4. Schedule


Condensed Phase Optics

- 1. All new optics target RRTMG
- 2. Clouds
 - Gamma size distribution liquid clouds (MG micro)
 - Ice Clouds (Mitchell Optics)
- 3. Aerosols
 - Target Species
 - Species Specifications
- 4. Requirements for Contributions

Liquid Cloud Optics

- Microphysics code (from Morrison and Gettelman) diagnoses in-cloud droplet distribution
- First version of optics is implemented
- Optical data compares well (when limited to specific case) to AER results
- Model testing on-going
- Meaning of in-cloud liquid water variability

Liquid Cloud Optics (visible)

Ice Cloud Optics

- Provided by David Mitchell (DRI)
- Parameterized in terms of Effective (radiative) diameter
- Effective diameter diagnosed by microphysics parameterization
- Computed using MADA code (Similar to FDTD in the case of no small mode crystals)

Aerosol Specification

- Dry Size Distribution (mean log(r), sigma(log(r)))
- Hygroscopic Growth Model
- Composition (internal/external mixture)
- Dry complex index of refraction (.2 -> 1000 micron)

Aerosol Status

- Optics for CCSM4 aerosols will probably be based on the BAM but are awaiting specs from AMWG
- (CAM3.5) Externally Mixed Species
 - 1. Tropospheric Sulfate (ammonium sulfate)
 - 2. Dust (4 bins)
 - 3. Carbonaceous (4 Species)
 - 4. Sea Salt (4 bins)*
 - 5. Volcanic Aerosol (Stratospheric H2SO4)
- (CAM3.5) Optics mostly based on OPAC (1998) data
- (CAM3.5) Optics not mapped to RRTMG bands

Aerosol Specification?

- CAM₃ Optics Assumptions
- Emission/Transport/Deposition Assumptions
- MG Cloud Microphysics Assumptions
- Appear in Diverse Sections of Code Rarely in file data

Volcanic Species

- Mass specification is broken in CAM3.5
- Chemists
 - Surface Area Density Distribution (time evolving)
 - Fixed Number
 - Prognostic Mass
- Climate/CAM
 - One bin with fixed size
 - Specified time evolving mass
- Welcome to join our discussion (ACD/CGD)

External Optical Contributions

- Reproducibility/Traceability
- Data and Methods Archived
- Spectrally resolved (SW and LW) and RRTMG-band:
 - Mass-specific Extinction
 - Mass-specific Absorption
 - Single-scattering Albedo
 - Asymmetry Parameter

Questions?

- 1. RRTMG A New Radiation Code for CAM
 - Science Tests
 - Integration Tests
- 2. New Interface for Radiative Constituents
- 3. Condensed Phase Optics
 - Clouds
 - Aerosols
- 4. Schedule

Schedule of Experiments

- 1. RRTMG, old cloud optics
- 2. Change to Mitchell Ice Optics
- 3. Change to MGC cloud optics
- 4. Add BAM Diagnostic aerosol forcing
- 5. Study and modifications from CCSM
- 6. CCSM/SOM runs
- 7. BAM interacting with microphysics (Which interactions?)

Future Work

- Offline Radiation
- Optics for internally mixed aerosols
- Move subcolumn generation out of radiation so that it can be coupled with subscale dynamics and perhaps in-cloud liquid water path variability
- Initialization step mie computation (run time?)
- Photolysis

Questions?

- 1. RRTMG A New Radiation Code for CAM
 - Science Tests
 - Integration Tests
- 2. New Interface for Radiative Constituents
- 3. Condensed Phase Optics
 - Clouds
 - Aerosols
- 4. Schedule