Latest Microphysics Developments & Ice Microphysics and Indirect effects for CAM4

A. Gettelman, X. Liu, H. Morrison, S. Ghan

Outline

- Motivation
- CAM Microphysics Status
- New Ice Nucleation Description
- Basic Results
- Status and future plans

MG Microphysics Status

- Code Running in Coupled Model
- Produces 'reasonable' climate

- Microphysics look good

- ENSO good in coupled system
- Too much sea ice in coupled run
- See R. Neale talk
- Indirect effects diagnosed
- New Optics being built for RRTM (Conley talk)

MG Coupled Run: ENSO

Gett

4

MG Coupled Run: Cloud Forcing Cloud Forcing v. CERES Obs

Longwave

Shortwave

MG Coupled Run: NH Sea Ice

Sea Ice too thick/extensive

Aerosol Indirect Effects (AIE)

1750 Aerosols – 2000 Aerosols

AIE Key Findings

- Model produces reasonable effects compared to observations
 - Not a strong global constraint
- Aerosol Indirect Effects are ~1-2 W/m2 with direct effects of 0.4-0.7W/m2
 - Depends on Pre-industrial emissions
- AIE numbers are only weakly dependent (10%) on whether aerosol mass is prescribed or prognostic
- Oxidant levels also seem to matter for AIE
 Changes AIE by 20-30%

AIE Next Steps

- Waiting on:
 - RRTM radiation interface: more flexible
 - New Radiation and New Cloud Optics
 - Final Aerosol Code (BAM/Modal, scavenging)
- Near final Configuration
 - PBL, Macrophysics
- Options (BAM):
 - Add aerosol species (Biogenic),
 - Change size distributions
 - Minimum Droplet Number
 - Modify Microphysics (Park)

Ice Processes: Motivation

- Cirrus and ice nucleation uncertain
- Supersaturation over ice common
 CAM does not permit it
- Cirrus radiative forcing important
- Cirrus affects stratospheric H₂O
- Better description allows process level testing with observations

Ice Microphysics in MG Micro

- New microphysics has limited ice nucelation
 - $-N_i = f(T)$ following Cooper (1986)
 - N_i=const below -35C
- Goal
 - Explore ice processes & sensitivity
 - Bergeron
 - Hallet Mossop ice multiplication
 - Parameterize ice nucleation
 - Allow supersaturation

Ice Nucleation

- Add ice nucleation treatment of Liu & Penner 2005, following Liu et al 2007
 - Homogenous and Heterogenous immersion nucleation
 - Relax Zhang et al closure for ice to allow supersaturation (C-E w.r.t. liquid)
- Based on parameterizing nucleation results from a detailed parcel model
 - Pro: detailed model
 - Con: lots of fixed numbers

Liu et al 2007: in CAM3.0

Allowing Supersaturation

- Goal: adjust closure for supersaturation
- Principle:
 - Separate ice and liquid cloud fractions
 - Bulk condensation only w.r.t water (liquid).
 - Ice formation requires
 - Existing ice (vapor deposition onto ice)
 - Liu et al 2007 parameterized ice nucleation
 - Process rates & sedimentation govern ice
 - Ice cloud fraction closed using IWC
 - Empirical fit to mid-lat cirrus observations (Wang & Sassen 2002, JAS)

Key Results: Current Version

- Reasonable TOA distributions
- Reduction of High Latitude Cloud
 - Especially mid-high clouds
- Increased UT humidity
- SW & LW Cloud Forcing 3W/m² less
- 30% lower IWP

Cloud Fraction

New Ice

Base Case

Downward JJA SW New Ice - Base Case (avg +8W/m²)

Ice Cloud Indirect Effects

- Sensitivity Experiments

 Increase ice nuclei by factor of 10, 100 (global)
- Results:
 - x10: IWP + 25%, tropical CF ±8-10W/m2
 - x100: IWP +100%, tropical CF ±16-20W/m2
 - X100: regional decreases in precipitation rate
- Need to explore sensitivity to aerosols
 - Vertical distribution of aerosols

Change in Ice Number

High IN (x10)

Std IN

Change in Precip

Base

High IN-Base
 – (x100)

-8

Status and Plans

- Finalize and Harmonize code
 - Rewriting mixed phase code now
 - Perhaps separate process rates by individual cloud fractions
- Write up description
 - Target for end of summer
- Port to latest version of trunk
 - Harmonize macrophysics and closure with Park/Rasch work
 - Propose for CAM4