

Emerging signals at various spatial scales

Julie Arblaster^{1,2,3} David Karoly¹ and Jerry Meehl¹

¹National Center for Atmospheric Research ²Australian Bureau of Meteorology, ³University of Melbourne

CCSM3 Large Ensemble Experiment

▶ the 30-member ensemble allows a thorough statistical analysis of emerging signals ie. the point at which the forced signal exceeds the noise

Experimental design: compared to IPCC runs

NCAR

In the Large Ensemble the initial state is identical except for atmosphere which varies from December 1, 1999 to January 15, 2000 from the 20th Century experiment

Estimates of internal variability: temperature

Standard deviations of global surface air temperature indicate that the internal variability can be mostly represented by the ensemble spread

NCAR

Estimates of internal variability: precipitation

Standard deviations of global precipitation also indicate that the internal variability can be mostly represented by the ensemble spread

NCAR

Estimates of internal variability

► Land points split into 22 regions, based on Giorgi and Francisco, Climate Dynamics, 2000

Estimates of internal variability: regional temperature

Estimates of internal variability: regional precipitation

Emerging signals: regional averages

Emerging signals: regional averages

NCAR

Ensemble size dependence of noise

Estimates of noise due to interannual variability

Interannual variability for global and regionally averaged tas and pr, except for some NH high latitude regions

Emerging signal

 forced signal (from 2000) emerges from the ensemble mean noise for most regions by 2020, spread by ~2050
cooling is possible for first decade

Ensemble size and uncertainty in forced change

 preliminary results suggest spread saturates with ~10 members, for global values

Extremes

▶ eg. precipitation signal does not exceed the noise, but precipitation extremes are expected to respond more strongly to anthropogenic forcing

T85 (initial states varying) vs T42 Large Ensemble

impacts of initial state on internal variability on interannual and decadal timescales