North American Drought

Michael F. Wehner Lawrence Berkeley National Laboratory mfwehner@lbl.gov

CCSM workshop Breckenridge, CO June, 2008

Collaborators: Dave Easterling, Jay Lawrimore, Richard.Heim, Russell Vose, Ben Santer

From http://www.drought.noaa.gov/palmer.html

- The Palmer Index is most effective in determining long term drought—a matter of several months—and is not as good with short-term forecasts (a matter of weeks). It uses a 0 as normal, and drought is shown in terms of minus numbers; for example, minus 2 is moderate drought, minus 3 is severe drought, and minus 4 is extreme drought.
- The Palmer Index can also reflect excess rain using a corresponding level reflected by plus figures; i.e., 0 is normal, plus 2 is moderate rainfall, etc.

PDSI deficiencies

- PDSI is often criticized.
 - A valid criticism is that the surface moisture model is unsophisticated. Evaporation may be overly sensitive to temperature.
 - However, for a cross model comparison study, this weakness becomes a strength.
 - GCMs vary greatly in their surface hydrology models.
 - Applying the simpler Palmer model to all the GCMs allows a uniform comparison of different climate models.

Palmer Drought Severity Index

- Code is a slightly modified version of that used by NOAA to calculate the official PDSI map.
 - Highly accurate surface characteristics.
- Driven by monthly mean surface air temperature and precipitation from the IPCC AR4 models
 - Used 19 models. Regridded to T42 prior to the PDSI calculation.
 - Calculate each realization separately.
 - Reference period is each models 1950-1999 ensemble mean
- 20C3M and SRES A1B scenarios.
- Compare to PDSI results driven by NCDC US observations and GPCP/HADCRUTv

Palmer Drought Severity Index

End of 21st Century (A1B) relative to 1950-1999 average

Model performance

- Drought indices measure the departure of soil moisture from the climatological mean
 - Nonetheless model bias is important
 - A moist bias over the USA & Mexico results in a severe underprediction of the drought area
- We can correct the bias by a normalizing to the 1950-1999 observed NCDC climatology.
 - Variability is scaled by a multiplicative factor.
- This correction dries out the Palmer land model resulting in an improvement in the PDSI index for some models.

Fractional drought area USA & Mexico

Monthly average PDSI < 2.0; Scaled climatology

Fractional extreme drought area USA & Mexico

Monthly average PDSI < 4.0; scaled climatology

Model performance (2)

- All bias corrected models still underpredict the drought area.
- Some models do much better than others.
- Discard the obvious poor performers.
 - Equally weight the rest.
 - Poor performers predict more future drought than the better performers.

1950-1999 average Mexico & CONUS drought fractional area

Bias corrected results

Model	Drought	Extreme Drought
ncdc observations	0.168806578	0.034437019
csiro	0.14808779	0.022924561
pcm	0.137485981	0.018892112
gfdl2.0	0.121160864	0.009945515
gfdl2.1	0.116677165	0.019054879
ccsm3.0	0.115016688	0.014367067
echam5	0.10787045	0.015052567
cgcm3.1_t63	0.107596155	0.016911189
mri_cgcm2_3_2a	0.106140988	0.008441853
iap_fgoals1_0_g	0.102484481	0.009147541
cccma_cgcm3	0.098624454	0.01422216
bccr_bcm2_0	0.090926724	0.006808807
Mean model	0.09076191	0.009711458
cnrm_cm3	0.081159334	0.006879526
hadcm3	0.078109092	0.005080268
miub_echo	0.073056347	0.004657245
hadgem1	0.07188468	0.005782828
inmcm3	0.058873725	0.002484735
ipsl	0.050600449	0.002390866
miroc_T42	0.034387906	0.000753741
miroc_hires	0.024333023	0.000720241

COMPUTATIONAL RESEARCH DIVISION

Fractional drought area USA & Mexico

Monthly average PDSI < 2.0; Scaled climatology

Fractional extreme drought area USA & Mexico

Monthly average PDSI < 4.0; scaled climatology

Conclusions

- Models do not produce intense enough dry events relative to their <u>own</u> climatologies.
 - which are too wet to begin with!
 - Bias correction helps some models
 - Models that better simulate the 20th century mean drought area predict less future drought than the poor performing models
 - Future large scale droughts in the Southwest and Mexico are likely due to increased evaporation
- The anthropogenic signal does not appear to rise in the raw model data above the noise at present
 - Human induced drought conditions may be attributable around 2050 (PDSI<2)
 - Human induced extreme drought conditions may be attributable around 2070 (PDSI<4)

