Atmospheric Circulation Response to Future Arctic Sea Ice Loss

Clara Deser, Michael Alexander and Robert Tomas

Future Arctic Sea Ice Loss NCAR Coupled Model Simulation Holland et al. (2006)

Figure courtesy of Julienne Stroeve

Future Arctic Sea Ice Loss NCAR Coupled Model Simulation Holland et al. (2006)

CCSM3 Arctic Sea Ice Concentration

Approach

Prescribe sea ice cover for 1980-99 and 2080-99 to Community Atmospheric Model Version 3 **T85** (1.4 latitude x 1.4 longitude); 26 levels

DETAILS

60 year integrations with repeating seasonal cycle of time-average sea ice concentration and thickness:

- •1980-99 (CCSM3 historical)
- •2080-99 (CCSM3 A1B)

•SSTs fixed at 1980-99 values, set to -1.8 C where sea ice removed and

Sea Ice Change: 2080-99 minus 1980-99

Sea Ice Change: 2080-99 minus 1980-99

Surface Energy Flux Response (Wm⁻²)

Air Temperature Response (°C)

Air Temperature Response (°C): Land Only

Snow Depth Response (cm liquid water equivalent)

Sea Level Pressure Response (hPa) ci=1hPa

Sea Level Pressure Response (hPa) ci=1hPa

How does the atmospheric circulation response to Arctic sea ice loss compare with the response to doubled CO₂ in the fully coupled CCSM3?

Sea Level Pressure Response (hPa) ci=1hPa

Sea Level Pressure Response (hPa) ci=1hPa

SUMMARY Atmospheric Circulation Response to Future Arctic Sea Ice Loss

- Largest sea ice loss in summer-fall (July-Nov), but largest surface energy flux response (which forces the atmosphere) in fall-winter (Oct-Mar)
- Thermodynamic response: warming (and moistening) of the boundary layer especially in fall-winter (2-5K over land and 15-20K over the Arctic ocean); increased snow cover over Siberia and northern Alaska
- Dynamic response: SLP response largest in fall-winter when it accounts for some of the response to 2xCO₂ in the coupled model; negligible in summer

Next Steps Atmospheric Circulation Response to Future Arctic Sea Ice Loss

- Allow sea surface temperatures to respond to sea ice loss
- Similar experiments with a regional high resolution atmospheric model (Cassano et al.) and an AGCM with a resolved stratosphere
- Similar experiments for snow cover (Tomas et al.)

Thank You

Extra Slides

Precipitation Response (mm day⁻¹)

 Δ Z3 500mb, CI = 10m & Δ Z3 1000mb, CI = 10m 2080-99 - 1980-99

 Δ Ice Coverage, CI = 20% & Δ CLDTOT, CI = 5%, 2080-99 - 1980-99

Thu May 29 11:38:30 MDT 2008

p_12months_ice_cldtot

Summer 2007 Arctic Sea Ice Loss

September 2007 sea ice (white area) *vs.* September long term mean (pink line)

2080-99 minus 1980-99

Surface Energy Flux Response (Wm⁻²)

