Inferring Future Changes in ENSO Teleconnections

Edwin K. Schneider

George Mason University and COLA

Collaborators

Mike Fennessy (COLA) Jim Kinter (COLA and GMU)

The Problem

- Want to project future changes in ENSO variability and predictability caused by increasing greenhouse gases.
- CGCMs have large biases in simulations of the tropical mean climate and variability for the current climate.
- Therefore, future projections of changes in tropical climate and tropical climate variability, and impacts on midlatitude climate from these models are suspect.

Interim Solution

- Examine the effect projected changes in GHG and SST climatology would have on current climate teleconnections.
- Method
 - Superpose future changes of SST and GHG from IPCC AR4 runs on observed time varying 20th century forcing (SST, sea ice, GHG, aerosols, ...) AGCM/LSM "IAMIP" runs.
 - Sea ice unchanged (not consistent with future SST)
 - Time varying tropical SST variability and external forcing as observed for 1950-1999.
 - Realistic structure of tropical annual mean and annual cycle of SST are assured.
 - Realistic ENSO evolution and structure are assured.
 - Shortcomings of this approach are obvious, as are the advantages

Related Papers

- Sexton et al, 2003: **Design and analysis of climate model experiments for the efficient estimation of anthropogenic signals**. *J. Climate.*
- Deser and Phillips, 2008: Atmospheric Circulation Trends, 1950-2000: The Relative Roles of Oceanic and Atmospheric Radiative Forcing. J. Climate.
- Campo and Sardeshmukh, 2008, Oceanic Influences on Recent Continental Warming. Climate Dyn. (submitted).

Details

- 21st century
 - IPCC AR4 SST differences
 - Monthly means (2065 to 2075)-(1965 to 1975)
 - (1965 to 1975) from 20C3M
 - (2065 to 2075) from A1b
 - GHG: A1b(2065 to 2075)-20C3M(1965 to 1975)
- Control run IAMIP ensemble 1951-2000
 Deser and Phillips, 2008, J. Climate
- All results from 5 member ensembles (x2) of 50 year runs

20C3M/A1B Forcing

Annual Mean **ASST**

ENSO Composites

- El Niño years (mature Decembers)
 - 1957, 1965, 1972, 1977, 1982, 1987, 1991, 1992, 1994, 1997
- La Niña years (mature Decembers)
 - 1955, 1956, 1964, 1970, 1971, 1973, 1974, 1975, 1988, 1998

Changes in Z200 ENSO Teleconnections

From Δ SST+ Δ GHG

>hGHG+ChEnGHG-IAMIP Comp Nino-Nina 200MB_GEOPOTENTIAL_HEIGHT 95%

From ΔSST

Ch+ChEn-IAMIP Ens10 Comp Nino-Nina 200MB_GEOPOTENTIAL_HEIGHT 95%

From ΔGHG

ChGHG+ChenGHG-Ch+ChEn Ens10 Comp Nino-Nina 200mb Geop. Ht. 95%

Changes in Ts ENSO Teleconnections

From Δ SST+ Δ GHG

ChGHG+ChEnGHG-IAMIP Comp Nino-Nina SURFACE_TEMPERATURE 95%

From ΔSST

Ch+ChEn-IAMIP Ens10 Comp Nino-Nina SURFACE_TEMPERATURE 95%

From ΔGHG

ChGHG+ChenGHG-Ch+ChEn Ens10 Comp Nino-Nina Sfc Temp 95%

Diagnosis of Changes in ENSO Teleconnections

- Structural diagnosis: ∆SST forcing vs. ∆GHG forcing
- Dynamical diagnosis:
 - Change in forcing inferred from change in El Nino minus La Nina precipitation
 - Attribute to changes in climatological SST, GHG
 - Change in wave transmission properties due to changes in the waveguide
 - Attribute to changes in climatological SST, GHG

Δ Precip Forcing of ENSO Teleconnections

From Δ SST+ Δ GHG

ChGHG+ChEnGHG-IAMIP Comp Nino-Nina TOTAL_PRECIPITATION 95%

From ΔSST

From ΔGHG

Ch+ChEn-IAMIP Ens10 Comp Nino-Nina TOTAL_PRECIPITATION 95%

ChGHG+ChenGHG-Ch+ChEn Ens10 Comp Nino-Nina Precipitation 95%

Δ Ts Climatology

From Δ SST+ Δ GHG

ChGHG+ChEnGHG - IAMIP 1951-2000 SURFACE_TEMPERATURE 95%

From ΔSST

En10 Ch+ChEn-En5 IAMIP 1951-2000 SURFACE_TEMPERATURE 95%

From ΔGHG

Ens10 ChGHG+ChenGHG-Ch+ChEn SURFACE_TEMPERATURE 95%

\triangle Precip Climatology

From Δ SST+ Δ GHG

ChGHG+ChEnGHG - IAMIP 1951-2000 TOTAL_PRECIPITATION 95%

From ΔSST

From ΔGHG

Ens10 ChGHG+ChenGHG-Ch+ChEn TOTAL_PRECIPITATION 95%

Δ Zonal Mean U, T Climatology DJF

From **AGHG**

△ Z200 Climatology

From Δ SST+ Δ GHG

ChGHG+ChEnGHG - IAMIP 1951-2000 200MB_GEOPOTENTIAL_HEIGHT 95%

From ΔSST

From ∆GHG

m

40

30

20

10

5

-5

-10

-20

-30

En10 Ch+ChEn-En5 IAMIP 1951-2000 200MB_GEOPOTENTIAL_HEIGHT 95%

Discussion

- Changes in ENSO teleconnections in 21st century are due to:
 - Changes in tropical heating distribution and intensity associated with changes in tropical SST
 - Changes in wave propagation characteristics of mean state

Changes in Basic State

- Changes in zonal mean jets
 - Intensification of jets from intensified ITCZ + zonal mean/Hadley circulation dynamics
 - Intensification/poleward dispacement of jets from GHG polar stratospheric cooling
- Changes in stationary waves
 - Intensification of stationary waves from (tropical) mean SST teleconnections
 - High latitude influence on stationary waves from GHG

