A Man-made Widening of the "Tropics"

Jian Lu

Collaborators:

Clara Deser Tomas Reichler

CCSM Workshop, Breckenridge, June 18, 2008

How wide is the Tropics?

Expansion from different measures

Seidel et al. 2008, Nature Geoscience

Expansion from different measures

Seidel et al. 2008, Nature Geoscience

Objective

- What causes the tropopause-based expansion of the "Tropics"?
 - SST changes or radiative effects (GHG, ozone, volcanic and sulphate aerosols, solar output)?
- Tools: GFDL AM2.1 (NCAR CAM3.0)
- 1958-2000

Data

- Radiosondes: HadRT V2.1 (1957-2001) (Parker et al., 1997)
- Reanalysis: ERA40 (1957/10—2001/09) (Uppala et al. 2005) NCAR/NCEP
- GFDL AM2.1 simulations
 - "SST": Obs SST/SIC 1950-2000
 - "SST+RAD": Obs SST/SIC + radiative forcings including: GHG,
 O3, solar and sulphate and volcanic aerosols
 - "SST+RAD" "SST": Effects of radiative forcings

Method

Tropopause-based metric

• WMO criterion:

the lowest level at which the lapse rate decreases to 2C/km, provided also the average lapse rate between this level and higher levels within 2km does not exceed 2C/km.

• Reichler (2003) algorithm

Annual mean tropopause

A snap shot of tropopause

Shape of the tropopause

PDFs of tropopause

---metric of Seidel and Randel

- Compute tropopause for each day using Reichler algorithm ⇒ H(x,y); for a year: H(days,x,y)
- For each year, compute the probability density function of H(d,x,y) in to [75:5:350] pressure(hPa) bins ⇒ P(bins,x,y)

• Zonal average of $P(bin,x,y) \Rightarrow P(bin,y)$

PDFs of daily tropopause P(bin,y)

Expansion from different measures

Seidel et al. 2008, Nature Geoscience

Broadening of tropics

Trend in PDFs of daily tropopause P(bin,y), DJF

Significance of the Widening

Fingerprints of radiative forcings

natural

Conclusion and outlook

- The agreement between ERA40 and the GFDL AM2.1 simulations corroborates the reality of an expansion of the tropics since the 1950s.
- SSTs alone drive no trend (or even a slightly shrinking trend) in tropical width. Only under the radiative forcing, especially GHG and O3, can AM2.1 reproduce the expansion of the tropics, a result that points to anthropogenic sources for the expansion.
- Further attribution is underway to investigate the respective roles of GHG and O3 forcing using AM2.1.
- The tropical expansion in SH summer (DJF) varies hand-in-hand with the expansion of the Hadley cell and the associated change in subtropical rain (P-E) pattern. Puzzles remain for NH and other seasons.

