What's needed to improve canopy-radiation interactions in CLM?

ROBERTE. DICKINSON GATECH AND UTA

- Define issue
- Summarize recent papers.

What's wrong with that currently in CLM?

- Radiation designed for treatment of a homogeneous canopy but
- Many if not most canopies are heterogeneous.
- Homogeneous means we need only consider the geometry of leaves, e.g. orientation and LAI
- Heterogeneous means the geometry enters in to determining the radiation.

Sketch of the partial trapping of light reflected from a canopy leaf by overlying leaves.

Ref. Dickinson 1983

Thanks to B. Pinty for fig.

What's the difference?

- Quantitative differences - changes somewhat canopy albedo, changes a lot how much of radiation reflected by underlying soil is absorbed by canopy.
- Major qualitative difference - the surface covered radiatively by the vegetation is that on which shadow is cast, not simply that which lies underneath. Changes a lot the partitioning of radiative heating between soil and canopy
- Diurnal varying - current definition of pfts applies only for overhead sun

How has sparse vegetation been represented in CLM?

- Earliest Dai et al. version of CLM included fractional vegetation, concept was thrown out as NCAR wanted to separate the bare soil from the pfts as done in LSM.
- CLM 3.0 data from AVHRR apparently largely implemented by uniformly covering bare soil with small LAI vegetation
- CLM 3.5 with Lawrence MODIS data appears to assume small areas of pfts and large areas of bare soil.
- In both cases, the bare and pft fractions interact with the same soil column as if close together.

How do we need vegetation to be represented?

- Where heterogeneity is at the small scale of shadow areas, need to include the bare element as part of the vegetation.
- Suggest new pfts - e.g. for evergreen shrub add a pft called sparse evergreen shrub - associate with it a fractional cover of vegetation, fc as obtained from MODIS continuous fields data set.

What else needs to be changed in model code?

- Refer to Oleson et al, 2004 documentation.
- P 37 need Sv and Sg - solar absorbed by vegetation and ground (similar considerations needed for longwave but we limit discussion here to solar).
- In current code ground under pft ground only absorbs sun that has been transmitted or scattered as diffuse light through the canopy.
- A sparse pft has a sun angle dependent fractional area of shadow under which logic same as above.
- Area not covered by shadow gets direct sun.

How is canopy heating modified?

- Applies over shadowed fraction of area.
- How such direct beam radiation transmitted or scattered up and down is changed following Dickinson et al (2008), Dickinson (2008) for a single shrub corrected for details left out.
- Details:
- how to reduce shadowed area for overlapping shadows? And how to compensate for the overlap by adding extra leaves to the single shrub.
- Solutions are for spherical shrub. Easy to make prolate spheroids but need aspect ratio data for the vegetation to do so

Treatment of shadow overlap

- Fractional area of shadow should approach 1 as shadows fc S large (S the relative area of a single shadow- for sphere is $1 . /$ cosine of sun angle).
- Should approach fc S when this is small.
- Many possible ways to do this - can associate with such ways statistical models of the bush distribution.
- Simplest statistical model is the same as used for leaves, i.e use for fractional area of shadow:

$$
\text { [1. }-\exp (-\mathrm{fcS})]
$$

Add extra leaves to represent shadow overlap

- Because of overlapping shadows , shadowed area reduced by $\mathrm{f}=(1 .-\mathrm{fcS}) / \mathrm{fcS}$
- Easiest, but perhaps least realistic (suggested by Xiowen Li). Use an LAI equivalent of LAI/f
- Put the extra leaves as homogeneous layer above canopy - has benefit of approaching homogeneous canopy description with large enough LAI
- Confine bush to a cylinder with radius smaller than that of the initial sphere and representing an average of what remains sunlight after shadow overlap

Vegetation Fractional Cover for Radiation Computation

Starting Point: MODIS/Terra Dataset for Vegetation Continuous Fields at Global 500m : Percent of Canopy cover for Broadleaf, Needleleaf, Evergreen, Deciduous, Shrubs, Crops, Other Herbaceous, Ice and Bare Ground.
Bare Ground fraction below a threshold value (say 40\%) can be distributed evenly by increasing the vegetation coverage and defining fractional cover parameter. Canopy cover goes to crown cover by divide by 0.8
Example: A 500m patch with:

Canopy Cover Fraction		$\stackrel{-r}{-r}$	Adjusted to Crown Cover		Adjusted for Fraction Cover	
Evergreen tree	37\%		Evergreen tree	46\%	Evergreen Broadleaf	60\%
Shrubs	25\%		Shrubs	31\%	Shrubs	40\%
Bare Ground	38\%		Bare Ground	23\%		

with fractional coverage 0.77 for both land covers.
Bare ground tile contribution computed only when less than 5\% vegetation in a pixel. Assuming pixels are of equal area, above logic applies equally well to fractions obtained by aggregating over the gridsquare -bare pixels left out

