Amplified Eurasian springtime warming from snow darkening

Mark Flanner

Large model sensitivity to snow darkening

Flanner et al. (2007), J. Geophys. Res.
Do observations support this?

Springtime susceptibility to snow changes

- Land-based snow reflectance changes exert greatest influence on Earth's energy budget during March-April - also when snow-albedo feedback is strongest

CRU 1979-2007 MAM Temperature Trend

GISS 1979-2000 MAM Temperature Trend

Springtime trends in temp and snow cover

- 1979-2007 warming

 rate is $3 x$ greater over Eurasia than North America.- Snow cover loss over: Eurasia: ~14\% North America: ~7\%

Springtime T and SCE trends

Eurasia

North America

March-May averages over land north of 30°

IPCC Model Predictions

Springtime temperature trends

Springtime snow cover trends
Top: Eurasia
Bottom:North America

Snow darkening from atmospheric aerosols

- Prognostic transport of black carbon and mineral dust, deposition to snow (SNICAR model)
- Time-evolving BC emissions [Bond et al., 2007]
- 1979-2000 Surface forcing over springtime snow:
- Eurasia: +3.9 W/m²
- North America: +1.2 W/m²

Modeled springtime climate trends

Springtime temperature trends
Springtime snow cover trends Blue: CAM/CLM without snow darkening Green: CAM/CLM with snow darkening

Springtime warming trends

GISS temperature analysis

CRU temperature analysis

(5-member ensembles with forced SSTs and sea-ice)

Warming vs. SCE decline

- Simulated warming and snow cover loss rates are correlated, but observations show greater snow loss / warming ratio than any model predictions (over 1979-2000)

Snowfall trends

- Snowfall biases contribute to snow cover biases over North America, but probably not over Eurasia

Model T1 1979-2000 MAM Snowfall Trend

Model T2 1979-2000 MAM Snowfall Trend

Conclusions

- Springtime Eurasia has warmed more rapidly than North America (since 1979)
- IPCC AR4 models (including those with forced SSTs and sea-ice) tend to predict similar warming rates over both continents
- 21 of 22 models underpredict Eurasian warming
- Hypothesis: Snow darkening is contributing to greater warming over Eurasia, where BC and dust emissions are greater
- We estimate 3x greater springtime snow darkening over Eurasia (3.9 W/m²)
- CAM/CLM experiments support hypothesis, but do not resolve snow cover trend bias observed in all AR4 models

