Groundwater impacts on soil moisture simulation

Guo-Yue Niu, Zong-Liang Yang,

Department of Geological Sciences, Jackson School of Geosciences, The University of Texas at Austin

and Ken Mitchell

CCSM Workshop June 18th, 2008

Problems due to free drainage

Total soil water storage: ds/dt = P - E - R

- 1. Upper-boundary condition (P E R_{sur})
- 2. Lower-boundary condition (R_{sub})

Redistribution among layers:

- 1. Soil hydraulic properties (K_{sat} , ψ_{sat})
- 2. Vertical distribution of roots

Problems due to free drainage (GLDAS/Noah)

Top 0.4m

Top 1.0m

Top 2.0m

A simple groundwater model (SIMGM) (Niu et al., 2007)

Problems when applied to CLM: too wet soil, possibly due to

- Too small recharge rate from soil to aquifer (too small K_a);
- Too strong upward flow (too large soil suction, ψ_{bot});
- Too small groundwater discharge inducing overflow of groundwater to soil

Modifications to SIMGM

Enlarge hydraulic conductivity K_a

 $C_{mic} * \psi_{bot}$

 $K_{bot} (1 - \exp(-f(z_{wt} - z_{bot})) / (f(z_{wt} - z_{bot})) \rightarrow K_{bot}$

Enlarge R_{sbmax} by $e^2 = 7.39$ (for Noah) groundwater discharge rate: $R_{sb} = R_{sbmax} * exp(-f * z_{wt})$ $\Rightarrow R_{sb} = R_{sbmax} * exp(-f * (z_{wt} - z_{bot}))$ surface runoff rate: $R_{sf} = P * F_{max} exp(-0.5 * f * z_{wt})$ $\Rightarrow R_{sf} = P * F_{max} exp(-0.5 * f * (z_{wt} - z_{bot}))$ Limit upward flow:

C_{mic} → fraction of micropore content 0.0 – 1.0 (0.0 ~ free drainage)

Capillary Fringe and Soil Pore-Size Distribution

See http://www.earthdrx.org/poresizegwflow.html

Capillary Tubes

Capillary rise is related to the diameter of the tube: the smaller the tube diameter the greater the rise of the water column

Capillarity is due to adhesion of water to a surface and cohesion of the adhered water to and among other water molecules

Macropore effects:

- 1. Larger recharge rate (through macropores)
- 2. Smaller upward flow (through micropores)

Tests against Sleepers River streamflow data

Soil moisture simulations in Illinois

Noah LSM with CLM schemes

Stomatal resistance: Ball-Berry Soil moisture stress factor : metric potential Micropore degree: Cmic = 0.0 (free drainage)

Soil moisture numerical scheme:

CLM vs. Noah

Noah LSM with CLM schemes

CLM soil moisture numerical scheme Soil moisture stress factor: CLM Stomatal resistance: Ball-Berry also changed s1 = 0.5*(SMC(k)+SMC(min(nsoil,k+1)))/smcmax to s1 = SMC(k)/smcmax

Micropore degree: $C_{mic} = 0.0$ vs. $C_{mic} = 0.4$

9

Noah LSM with CLM Schemes

CLM soil moisture numerical scheme Stomatal resistance: Ball-Berry Micropore degree: Cmic = 0.0 (Free drainage)

Soil moisture stress factor: btran

Noah LSM with CLM schemes

CLM soil moisture scheme Soil moisture stress factor: BATS Stomatal resistance: Ball-Berry Micropore degree: $C_{mie} = 0.0$ vs. $C_{mie} = 0.6$

Noah LSM with CLM schemes:

CLM soil moisture scheme Soil moisture stress factor: BATS Stomatal resistance: Ball-Berry Micropore degree: Cmic = 0.6 2L averaged SM vs. 1L SM to compute hydraulic conductivity

12

Groundwater is really important for modeling soil moisture, both for mean-state and variability.

We propose to modify SIMGM to account for macropore effects:

1. Enlarge recharge rate from soil to aquifer and

2. Limit the upward flow from aquifer to soil; and

3. Enlarge groundwater discharge rate (to avoid overflow to soil)

C_{mic} is an important calibration parameter and largely depends on surface schemes, e.g., formulations of soil moisture stress factor, although it should depend on deep soil structure.

Larger C_{mic} for larger E at the surface; Smaller C_{mic} for smaller E at the surface