Parameterizing the Faroe Bank Channel (FBC) and Denmark Strait (DS) Overflows

G. Danabasoglu, B. Briegleb and W.Large (NCAR)

WHAT HAVE WE DONE ? OWG 07 DOES IT WORK ? OWG 07 DOES IT MATTER ??? Today

Uncoupled OGCM (~3 deg) Coupled CCSM (*) (T31x3) Experiments

- CON (*): 200 year, "resolved" overflows
- FBC : 200 year, parameterized FBC
- DSO (*): 200 year, parameterized DSO

RESULTS : (Years 181 - 200)

CON (*) - OBS (biases)

DSO (*) - CON

Matter ?

Temperature at 2000m

(-1.84e+00 to 9.74e+01 by 0.50 °C)

DSO alone removes much of the North Atlantic bias from the Labrador Sea to the South Atlantic

Matters ? Temperature at 2000m

CCSM biases much smaller

(-1.68e+00 to 9.72e+01 by 0.50 °C)

Matters ? Temperature at 2000m

(-1.33e+00 to 5.20e-01 by 0.10 °C)

Temperature at 500m

30 and 75° N.

(-7.54e+00 to 1.23e+01 by 1.00 °C)

4.50

4.00 3.50 3.00

2.50

2.00 1.50 1.00

0.50

0.00 -0.50

-1.00-1.50-2.00

-2.50-3.00-3.50-4.00-4.50

-5.00

360°E

90°S

0*

160°E (-3.84e+00 to 6.12e+00 by 0.50 °C)

270**°**E

90°E

Prognostic INFLOW is east of Iceland in N. A. Drift, not locally in Denmark Strait

Conclusion : These positive results justify ;

- Generalization for multiple overflows, higher resolution, SE standards
- Evaluate coupled climate impact of parameterized overflows by comparing CFC uptake to observations
- Effect on North Atlantic Circulation & Sea-Ice
- Include Antarctic shelves

THE END

from J.Price

Working ?

M_S , M_E (Sv) 200 year Spin Up

Acceptable drifts

Final assessment when run together

4.2 'src_1-10.dat' 'ent_1-10.dat' 4 Sill Depth 686m 3.8 Inflow Depth 686-945m 3.6 FBC Source Depth 686-945m 3.4 Entrainment Depth 1280-1669m 3.2 Product Depth 1669-2098m ≺ Overflow Transpor 2.8 2.6 2.4 2.2 Ms Source Daily 1.6 1.4 Entrainmen 1 0.8 0.6 ۵ 50 100 150 200 Model Year starting from Levitus 4.2 'src_1-10.dat' 'ent_1-10.dat' 4 Sill Depth 502m 3.8 DS(Inflow Depth 502-686m 3.6 Source Depth 502-686m 3.4 Entrainment Depth 686-945m 32 Product Depth 1280-1669m Transport 2.8 2.6 Source 2.4 Daily Overflow 1.8 1.6 Entrainment 1.4 1.2 b 8 0.6 50 0 100 150 200 Model Year starting from Levitus

Ocean Only x3 resolution Faroe Bank Channel Overflow Mass Fluxes (fbc006)

Working?

North Atlantic Ideal Age (181-200)

Ocean Model for CCSM4 +: June 08, CCSM

- Ocean Carbon Cycle (ecosystem)
- Reduced sea ice extent in Arctic margins
- Improved equatorial ocean physics (ENSO)
- Slower Antarctic Circumpolar Current
- Cooler coastal SSTs (eastern boundaries)
- Deeper North Atlantic Overturning
- Warmer North Atlantic SST (Gulf Stream)

Review CCSM3 to CCSM3.5

- Ocean BGC, Carbon-cycle
- Extension of GM90 eddy parameterization to mixed-layers with a strong depth dependency (CLIVAR Eddy-Mixed Layer CPT)
- Increase vertical levels from 40 to 60
- Greatly reduced lateral viscosity (Key to CCSM3 & FV excess sea-ice problem)

ANN aice NH

Equatorial physics (coupled)

- Extend observationally based tidal mixing to shallow seas (e.g. Banda Sea)
- Latitudinal dependent internal wave mixing in the ocean interior (1/10 tropics and Arctic), (x10 20-30°)
- Resolved Tropical Instability Waves (viscosity)

Ongoing to CCSM4 and beyond

- Final decisions will depend on CAM (PBL) !!!
- Optimizing 60 levels.
- Parameterization of sub-mesoscale re-stratification. □
- Consistent PBL (atm, ocn) and flux (air-sea, air-ice, air-land) stability functions.
- Diurnal cycle of SST. (prototyped)
- Parameterized deep overflows. (generalizing)
- Nested regional models (coasts, ITF). (1 way)
- Coastal ecosystems at higher trophic levels. (planning)

BSF and T' @ 175m

North Atlantic Current

Temperature at 2000m

DSO alone removes much of the North Atlantic bias from the Labrador Sea to the South Atlantic

Temperature at 500m

DSO alone removes most North Atlantic bias between 30 and 75° N.

(-3.84e+00 to 6.12e+00 by 0.50 °C)

ZONAL WIND STRESS

Observed

Observed

CCSM3.5 (31)

THE END

Add Monday

Slides on NAC from Steve

Interior Diffusivity

20°N

20°S

40°5

LATITUDE

\triangle SST colors 0.6 Δ SLP contours 0.4 0.2 -0.2 -0.4 -0.6 -0.8 -1.2 -1.4 -1.6 -1.8 100°E 60°W 0. 160 % LONGITUDE dSST (color) and dPSL (mbar) - LEVITUS/PHC2) mean= 0.23 (MODEL 10.0 9.0 8.0 7.0 6.0 50°N 5.04.0 3.0 SST bias 2.0 1.0 EQ 0.0 -1.0-2.0 -3.0 -4.0 -5.0 50°S -6.0 -7.0 -8.0 -9.0 -10.0 100° 200° 300% (-7.14e+00 to 8.64e+00 by 1.00 °C)

No change to Ocean PBL

Temperature at 3000m

(-2.26e+00 to 1.79e+00 by 0.50 °C)

(-8.83e-01 to 9.42e-02 by 0.10 °C)

DSO alone reduces North Atlantic biases

FV2x1

Higher Viscosity

T & velocity at 96.9241m

Tropical rainfall biases in T42x1.

Difference in rainfall between high mixing and control.

ZONAL WIND STRESS

0.07

mean=

UW (30)

TAUX ccsm3_5_beta19_uw02r [41-60]

0.06

mean=

CCSM3.5 (26) TAUX 601 [81-100]

Observed

UWpbl (30)

Parameterized Overflows

from J.Price

