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Rate of ice mass loss (km? yr1)

Motivation for Ice Sheet Modeling:

Mass loss to oceans (& sea level rise)
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Motivation for improved Ice Sheet Models

Current generation models do not capture observed behaviours?, because:

(1) fundamental physics are lacking (e.g. solving simplified equations,
negating realistic simulation of outlet glaciers and ice streams)

(2) processes of fundamental importance are not accounted for (e.g.
simplified, static treatment of basal boundary conditions, ignoring
interaction with bounding oceans, etc.)

1]PCC (2007)
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1Blatter (J.Glac., 41, 1995)
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Equations of Stress Equilibrium
(Cartesian Coordinates)

Assume static balance of forces by ignoring acceleration
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Equations of Stress Equilibrium (scaled)
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Equations of Stress Equilibrium (scaled)

_ vert. length scale ~ H

~ horiz. length scale L
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Horizontal Length Scale

... choice of L is somewhat arbitrary...
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Horizontal Length Scale

... choice of L is somewhat arbitrary...

(1) for ice sheet, L approx. ice sheet span,
A=H+L~(10°x10°) > A~102 A% ~10*

(2) if we take L as a charc. length for horiz. stress transfer,
L ~5-10 x H,
A~101, A2 ~102

... terms associated with A? are negligible,
... terms associated with A are NOT



First Order Approximation (scaled)
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First Order Approximation (scaled)

1st-order SIA: Red omissions (A?)
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First Order Approximation (scaled)

1st-order SIA: Red omissions (A?)
0-order SIA: Red + Blue omissions (A, A?)
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First Order Approximation (unscaled)




First Order Approximation (unscaled)

... simplify vert. equation
so it can be “stuffed
into” horiz. equations ...
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First Order Approximation (unscaled)

...Integrate in vertical from upper sfc through depth ...
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First Order Approximation (unscaled)

...Ssubstitute vertical relation for P into horizontal balance ...
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First Order Approximation (unscaled)

...Ssubstitute vertical relation for P into horizontal balance ...
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First Order Approximation (unscaled)

...Ssubstitute vertical relation for P into horizontal balance ...




First Order Approximation (unscaled)

...use definition of deviatoric stress to eliminate vertical-normal
stress deviator in horiz. equations ...




First Order Approximation (unscaled)

...use definition of deviatoric stress to eliminate vertical-normal
stress deviator in horiz. equations ...
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t.=B¢ "€, B=B(T) (constitutive relation)
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First Order Approximation (unscaled)

...use constiutive relation to write stresses in terms of strain
rates and eff. visc., write strain rates in terms of vel. grads. ...




First Order Approximation (unscaled)

...use constiutive relation to write stresses in terms of strain
rates and eff. visc., write strain rates in terms of vel. grads. ...
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First Order Approximation (unscaled)

...use constiutive relation to write stresses in terms of strain
rates and eff. visc., write strain rates in terms of vel. grads. ...
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First Order Approximation (solution)

Solve for u by treating v terms as known source (and vice versa)
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First Order Approximation (solution)

Solve for u by treating v terms as known source (and vice versa)
Equations discretized using Finite Difference Method

Vertical coordinates transformed to sigma coordinates

lterate on effective viscosity using “unstable manifold correction?”
Conservation of energy (heat balance model) similar to GLIMMER

Surface and basal boundary conditions are fully HO (not O-order approx.)

THindmarsh and Payne (Ann. Glac., 1996); Pattyn (JGR, 2003)
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ISMIP-HOM!1 exp. A (sheet flow)

s = 8(x) (constant slope)
b = b(x,y) (periodic bed roughness)
u(b)=v(b) =0 (no slip)

1Pattyn et al. (EGU, AGU, 2007)
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ISMIP-HOM!' exp. A (sheet flow)
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ISMIP-HOM exp. C (stream flow)

s = 8(x) (constant slope)

b = b(x) (constant slope)

u(b)= BTy (sliding law)
B=B(x,y) (periodic traction)

1Pattyn et al. (EGU, AGU, 2007)
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Greenland Ice Sheet: diagnostic velocity field

Momentum Balance BCs:

surface: free surface
*bed: u=v=0
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Energy Balance BCs:

surface: specified T (ERA 40)
bed: specified dT/dz (Qge, = 55 mMW)
sides: no lateral diffusion

Calculation:

... hold geometry, T, Qge, steady ...
... allow B(T), u, and nto evolve to steady state ...



Greenland Ice Sheet: diagnostic velocity field

Momentum Balance BCs:

surface: free surface
*bed: u=v=0
*sides: u=v=0 *( A major oversimplification! )

Energy Balance BCs:

surface: specified T (ERA 40)
bed: specified d7/dz (Qge, = 95 mW)
sides: no lateral diffusion

Calculation:

... hold geometry, T, Q. Steady ...
... allow B(T), u, and nsto evolve to steady state ...

How do modeled and observed! flow fields compare spatially?

1Bamber et al. (J.Glac., v.46, 2000)
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Current and Future Work
“Prognostic” mode
- improved methods of thickness evolution
Floating ice / Grounding lines
- participate in MISMIP1 intercomparison project (EGU 2007)

- working on 2d sheet-stream-shelf model “coupled” to POP

Basal processes model (evolving basal BC?)
- basal sliding linked to yield stress of subglacial till

- yield stress a function of till properties and basal hydrology

Basal hydrology

- need time-dependent, conservative model of basal water
flow with reasonable time step

1Schoof et al. (EGU, 2008) 2 Bougamont et al. (JGR, 108, 2003)









First Order Approximation (solution)

... put all terms containing v on LHS and all terms containing v on
RHS. Solve for u by treating RHS as known source using v from
previous iteration ...
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First Order Approximation (neglected terms)
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First Order Approximation (neglected terms)
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