State of the Community Climate System Model

Peter Gent

Chairman

CCSM Scientific Steering Committee

Scientific Priorities for CCSM4

- Improve the tropical Pacific and ENSO simulations; reduce SST biases as much as possible.
- Include biogeochemistry and ocean ecosystem model for the carbon cycle.
- Include both the direct and indirect effects of aerosols.
- Include interactive vegetation and land use changes in the land component.
- Include an atmospheric chemistry component in CAM4.
- Include a land ice sheet component.

Climate-carbon cycle feedback analysis

• Following Friedlingstein et al. 2006:

Gain
$$\approx -\alpha (\gamma_{\rm L} + \gamma_{\rm O}) / (1 + \beta_{\rm L} + \beta_{\rm O})$$

(K ppm⁻¹) α = transient climate sensitivity to CO₂

(PgC ppm⁻¹) β = (land or ocean) carbon storage sensitivity to CO₂

(PgC K⁻¹) γ = (land or ocean) carbon storage sensitivity to climate

Atmosphere and ocean components of climate-carbon cycle feedback

 low Ndep
 high Ndep

Lighter lines are other C4MIP models with just a carbon cycle

Thornton et al., in review

Land components of climate-carbon cycle feedback

• Effect of C-N coupling on gamma_land is to **reduce** atmospheric CO2 by about **130 ppm** by 2100, compared to previous model results

 Net climate-carbon cycle feedback gain (including ocean response) is nearly neutral or negative, compared to positive feedback for previous Thornton modelseview

Aerosol Indirect Effects in CAM

Steve Ghan, Xiaohong Liu, Richard Easter: PNNL Andrew Gettelman, Phil Rasch, Hugh Morrison, Jean-Francois Lamarque, Peter Hess, Natalie Mahowald, Francis Vitt: NCAR Phillip Cameron-Smith, Cathy Chuang, Keith Grant: LLNL Annica Ekman: Stockholm University

U.S. DEPARTMENT OF ENERGY

Bulk model sensitivity tests

- Prognostic: online aerosol, NCAR emissions
- Prescribed: offline aerosol from prognostic aerosol history
- AEROCOM: online aerosol, AEROCOM emissions

Experiment	ΔTOA (Wm ⁻²)	∆Fdirect (Wm ⁻²)	Δ Findirect (Wm ⁻²)
Prognostic	-2.8	-0.73	-2.0
Prescribed	-3.0	-0.67	-2.3
Aerocom	-1.6	-0.49	-1.1

Trade-offs

- Bulk aerosol
 - is faster
 - is on the trunk
 - produces an acceptable indirect effect with AEROCOM emissions
- Modal aerosol
 - allows size distribution to vary in a realistic manner
 - treats aging to internal mixtures
 - produces a smaller indirect effect

Short-term Simulations/Forecasts

- Use higher 0.5° resolution atmosphere and land.
- Run from 1980 2000 using observed forcing, and then from 2000 – 2030 using the A1B scenario.
- Have just interpolated 1980 atmosphere and land ICs from 20th Century run using ~2° resolution.
- Do need to initialize the ocean for these runs?
- Idea is to improve near-term projections over USA.

0.5° atmosphere/land

2°

DJF Total Precipitation (mm/day)

CCSM Orography (meters)

Unstable Greenland ice sheet?

Surface melt on Greenland ice sheet descending into moulin, a vertical shaft carrying the water to base of ice sheet.

Source: Roger Braithwaite

Recent observations: Greenland

From Bill Lipscomb, LANL

- Laser altimetry shows rapid thinning near Greenland coast: ~0.20 mm/yr SLE
- Thinning is in part a dynamic response: possibly basal sliding due to increased drainage of surface meltwater.
- Ice observed to accelerate during summer melt season (Zwally et al., 2002)

Ice elevation change (Krabill et al., 2004)

Ice sheet dynamics

Ice sheet interior: Gravity balanced by basal drag

- Ice shelves: No basal drag or vertical shear
- Transition regions: Need to solve complex 3D elliptic equations—still a research problem (e.g., Pattyn, 2003)

Current SSC Members and Terms

Dave Bader, PCMDI	CCPP Chief Scientist
Gordon Bonan, NCAR	7/31/2009
Chris Bretherton, U Washington	12/31/2008
Bill Collins, LBNL	12/31/2009
Scott Doney, WHOI	6/30/2010
Peter Gent, NCAR	6/30/2008
Steve Ghan, PNNL	12/31/2009
Jeff Kiehl, NCAR	6/30/2010
Bill Large, NCAR	CGD Director
Phil Rasch, NCAR	12/31/08
Steve Vavrus, U Wisconsin	6/30/2010
Mariana Vertenstein, NCAR	12/31/2008

CoChairs of Working Groups

Rotating off :=

Land WG: Steve Running, Univ of Montana

Ocean WG: Bill Large, NCAR

Software Engineering WG: Cecelia DeLuca, NCAR

Thanks for your terms as Cochairs

Starting terms :=

Land WG:

Ocean WG: Gokhan Danabasoglu, NCAR

Implementation Plan for CCSM 4

CCSM 4 needs to be ready by the end of 2008 for AR5 in early 2013.

What needs to be done in the next year ?

- The individual components of CCSM4 need to be finalized: the deadline is September 30.
- Then CCSM4 needs to be finalized; usually takes a few months, and 1870 control and 20th century runs made. Need high-res and low-res versions as well.
- Need to determine how to initialize future scenario runs for the carbon cycle, especially the ocean.
- Need to get much more experience with short-term simulations do we have the correct format, what difference does initializing the ocean make, etc ?