Simulating Transient Climate Evolution of the Last 21,000 years with CCSM3 (TraCE-21,000): A Progress Report

> Feng He, Zhengyu Liu, Bette Otto-Bliesner, Esther Brady, Robert Tomas, Peter Clark, David Erickson, Rob Jacob

University of Wisconsin-Madison, NCAR, Oregon State University Oak Ridge National Laboratory, Argonne National Laboratory National Center for Computational Sciences

Outline

- The Objective of TraCE-21,000
- The Reconstruction of AMOC and Sea Level Rise since LGM
- Model Configuration and Overall Strategy
- 22ka-15.5ka Progress Report
- The Collapse of AMOC during H1
- The Hysteresis of AMOC in CCSM3
- AMOC Resumption as the Cause of BA Warming
- Conclusion

The Objective of TraCE-21,000

- Provide the synchronously coupled transient ATM-OCN-DV-GCM simulation of the last 21,000 years
- Assess the sensitivity of the climate system to the change of greenhouse gases, notably CO2
- Investigate how the climate system exhibits abrupt changes on decadal-centennial time scales (H1, BA, YD, etc)

McManus et al, Nature 2004

AMOC & North Atlantic Climate

McManus et al., Nature 2004

C3: During BA, AMOC recovers but SAT_{GISP} overshoots

C2: AMOC keeps "off" between H1 and BA, but SAT_{GISP} recovers after H1

Model Configuration

- Configuration: Fully coupled CCSM3 (T31_gx3v5) + Dynamic Vegetation
- Machine: Phoenix (Cray X1E) at NCCS/ORNL
- Performance: 45 Model Year/Day with 20 minutes CAM timestep for better stability

Overall strategy I

- Use SLR as the constraint to simulate AMOC
- Prescribe GHG (CO2, CH4, N2O), orbital forcing together with continental ice sheet (ICE5G)
- Performed 1,800 year equilibrium run with dynamic vegetation code before the 22 kyr transient simulation (branched off from equilibrium LGM run b30.106 / no dynamic vegetation code)

Green House Gas Forcing

Overall strategy II

- Special considerations for 19ka, H1, BA, YD events
- Several sensitivity runs with same initial condition but different routing/rates of freshwater pulses
- Select the run that closely resembles AMOC to continue the transient experiment

Introduction to the Hosing Experiment

4

3

2

1

0

-1

-2

-3

-4

CCSM3

GFDL

Barreiro et al. Annu. Rev. Earth Planet. Sci. 2008

SSTA

Sensitivity Exp I: 19ka Melting Water Event

Clark et al., Science 2004

Ramped vs Constant Hosing

ka BP

The Collapse of AMOC during H1

How to keep AMOC "off" before BA for 3000 yrs?

Early Less Sea Level Rise vs Collapsed AMOC

The Hysteresis of AMOC

Hosing Rate (m/kyr)

Progress Report

(22ka-15.5ka)

Progress Report

(22ka-15.5ka)

The increase of SAT might be due to either CO2 increase or rebounding after it was pushed down during H1

Conclusion

- Low resolution CCSM3 could exhibit abrupt changes on decadal-centennial time scales under water hosing scenarios.
- The time scales of the abrupt changes of AMOC (H1, BA) during the last deglaciation could be correctly simulated using certain water hosing scheme.
- The variability of AMOC could produce the signature of the oldest dryers and BA warming in GISP2 ice core record.