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Trends in Climate Model Resolution

� High resolution configuration:  1/10th degree ocean/ice with 0.5 
degree atmosphere.

– Ocean:          3600 x 2400 x 42
– Sea ice:         3600 x 2400 x 20
– Atmosphere:  576 x 384 x 26
– Land:              576 x 384 x 17 

� Compared to CCSM3:
– Ocean:   73x larger
– Atmosphere:   7x larger



Trends in Climate Model Resolution

� History output sizes for high-resolution configuration for one write of a 
single monthly average
– Atmosphere:   0.8 GB
– Ocean:            24 GB (reduced; 100GB if full)
– Sea Ice:             4 GB
– Land:               0.3 GB

� Restart output:
– Atmosphere:   0.9 GB
– Ocean:             29 GB (96 GB with extra tracers)
– Sea Ice:             5  GB
– Land:               0.2 GB
– Coupler:           6.5 GB



Trends in High Performance Computing systems

� Moore’s Law is still increasing transistor count but now they are grouped in to 
multiple cores.

� Memory/core is nearly constant.

� Power/cooling constraints promote design for maximum flops/watt
– BlueGene:   low power nodes;  low memory– BlueGene:   low power nodes;  low memory

• BG/L node:  2 440 PowerPC, 0.7GHz;  512MB (256MB/core)
• BG/P node:  4 450 PowerPC, 0.85 GHz; 2GB (512MB/core)

– SciCortex node:  6 MIPS64 cores, 0.5 GHz; (600 mW each!)



Ye Olde Gather/Scatter 
with Serial Read/Write

� As old as the first parallel program
� Still state-of-the-art

Example:  gather and write



Solution:  Parallel I/O! 

Figure and following 
general parallel I/O 
overview provided by 
Rob Latham (Argonne)

� Parallel I/O beings with hardware and low-level software forming a 
parallel file system
– Many disks look like one big disk.
– Related:  old parallel I/O method of each processor writing its own file 

to local disk.   Postprocessing needed to complete output.
– Examples:  PVFS,  Lustre,  GPFS.



MPI-IO   

� The Message Passing Interface (MPI) is an interface standard for writing 
message passing programs
– Most popular programming model on HPC systems

� MPI-IO is an I/O interface specification for use in MPI apps
� Data model is same as POSIX

– Stream of bytes in a file
� Features:� Features:

– Collective I/O
– Noncontiguous I/O with MPI datatypes and file views
– Nonblocking I/O
– Fortran bindings (and additional languages)

� Implementations available on most platforms

I/O presentation from Rob Latham (Argonne National Lab)



NetCDF:  Standard file format used in climate modeling

� Data Model:
– Collection of variables in single file
– Typed, multidimensional array variables
– Attributes on file and variables

� Features:
– C and Fortran interfaces
– Portable data format

� Data is always written in a big-endian format
� NetCDF files consist of three regions

– Header
– Non-record variables (all dimensions 

specified)
– Record variables (ones with an unlimited 

dimension)

I/O presentation from Rob Latham (Argonne National Lab)



Parallel NetCDF: NetCDF output with MPI-IO

� Based on NetCDF
– Derived from their source code
– API slightly modified
– Final output is indistinguishable from serial NetCDF file

� Additional Features
– Noncontiguous I/O in memory using MPI datatypes– Noncontiguous I/O in memory using MPI datatypes
– Noncontiguous I/O in file using sub-arrays
– Collective I/O

� Unrelated to netCDF-4 work

I/O presentation from Rob Latham (Argonne National Lab)



Goals for Parallel I/O in CCSM

�Provide parallel I/O for all component models

�Encapsulate complexity into library 

�Simple interface for component developers to �Simple interface for component developers to 
implement

�Extensible for future I/O technology



Goals for Parallel I/O in CCSM

�Backward compatible (node=0) 

�Support for multiple formats
– {sequential,direct} binary
– netcdf – netcdf 

�Preserve format of input/output files 

�Supports 1D, 2D and 3D arrays



Climate model decompositions can be complex

Ocean decomposition with space-filling curve



PIO Terms and Concepts:

� I/O decomp vs. physical model decomp

– I/O decomp == model decomp

• MPI-IO+ message aggregation

– I/O decomp != model decomp

• Need Rearranger: MCT, custom

No component-specific info in library� No component-specific info in library

– Pair with existing communication tech

– 1-D arrays input to library; component must flatten 2-D and 3-D 
arrays



PIO Data Rearrangement

� Goal: redistribute data from computational layout of the model 
(“compdof”) to a subset of processors designated for I/O (“iodof”).
– Provides direct control of number of procs reading/writing to maximize 

performance on a platform
– This level of control not possible with pnetcdf API, also more portable 

than MPI-IO hints
– I/O decomposition matched to actual read/write

� Initial method: MCT
– Pro: MCT Rearranger is general, allows arbitrary pattern
– Con: Setup is expensive (all-to-all matching); description of the 

decompositions can be large due to poor compression of small runs 
of indices

� Improved method: Box Rearranger
– Netcdf/Pnetcdf reads/writes naturally operate on rectangular “box” 

subsets of output array variables
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Data rearrangement



Box Rearranger



PIO Box Rearranger

� Mapping defined by extents of box for each I/O node
– Extremely compact representation easily distributed
– Reverse mapping computed at runtime

� Supports features needed for e.g. ocean vs. land
– “holes” in computational decomposition
– fill values for I/O dofs not covered

� Design evolved driven by performance of CAM integration
– Initial design conserved space by creating send/receive types on-the-

fly.  MPI too slow.
– Important to performance to cache MPI types and compute reverse 

mapping up-front during Rearranger creation
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PIO API

subroutine PIO_init(comp_rank, comp_comm, num_iotasks, num_aggregator, 
stride, Rearranger, IOsystem, base)

integer(i4), intent(in) :: comp_rank            ! (MPI rank)
integer(i4), intent(in) :: comp_comm ! (MPI communicator)
integer(i4), intent(in) :: num_iotasks          
integer(i4), intent(in) :: num_aggregator
integer(i4), intent(in) :: stride
integer, intent(in) :: Rearranger  !defined in pio_types 

+ PIO_rearr_none ! pio does no data rearrangment, data is assumed to be in it's final form when passed to pio

+ PIO_rearr_mct ! pio uses mct to rearrange the data from the computational layout to the io layout.
+ PIO_rearr_box ! pio uses an internal rearranger to rearrange the data from the computational layout to the io layout. 

type (IOsystem_desc_t), intent(out) :: IOsystem   ! Output

IOsystem stores the context



PIO API

subroutine PIO_initDecomp(Iosystem,baseTYPE,dims,compDOF,IOdesc)
type(IOSystem_desc_t), intent(in) :: IOsystem

integer(i4), intent(in) :: baseTYPE      ! type of array {int,real4,real8}
integer(i4), intent(in) :: dims(:)             ! global dimensions of array
integer (i4), intent(in) :: compDOF(:)   ! Global degrees of freedom for comp decomposition
type (IO_desc_t), pointer, intent(out) :: IOdesc 

Automatically computes start(:) and cnt(:) to define 
the I/O mapping



PIO API

subroutine PIO_initDecomp(Iosystem,baseTYPE,dims,lenBLOCKS,compDOF, 
ioDOFR,ioDOFW,start,cnt,IOdesc)

type(IOSystem_desc_t), intent(in) :: IOsystem

integer(i4), intent(in) :: baseTYPE      ! type of array {int,real4,real8}
integer(i4), intent(in) :: dims(:)             ! global dimensions of array
integer (i4), intent(in) :: lenBLOCKS
integer (i4), intent(in) :: compDOF(:)   ! Global degrees of freedom for comp decomposition
integer (i4), intent(in) :: ioDofR(:)       ! Global degrees of freedom for I/O decomp (Read op)
integer (i4), intent(in) :: ioDofW(:)      ! Global degrees of freedom for IO decomp (Write op)integer (i4), intent(in) :: ioDofW(:)      ! Global degrees of freedom for IO decomp (Write op)
integer (PIO_OFFSET), intent(in) :: start(:), cnt(:) ! pNetCDF domain decomosition information
type (IO_desc_t), pointer, intent(out) :: IOdesc 

start(:) and cnt(:) define the I/O mapping



PIO API

subroutine PIO_write_darray(data_file, varDesc, IOdesc, array, iostat, fillval)
type (File_desc_t), intent(inout) :: data_file           ! file information (netcdf or binary)

type (IOsystem_desc_t), intent(inout) :: iosystem ! io subsystem information
type (var_desc_t), intent(inout) :: varDesc             ! variable descriptor
type (io_desc_t), intent(inout) :: iodesc                  ! io descriptor defined in initdecomp
intent(in) :: array ! array to be written (currently integer, real*4 and real8 types are supported, 1 

dimension
integer, intent(out) :: iostat ! error return codeinteger, intent(out) :: iostat ! error return code
intent(in), optional :: fillvalue ! same type as array, a fillvalue for pio to use in the case of missing 

data 

Cached I/O mapping and structures reusable for multiple 
writes/reads (via IOdesc)



PIO API

subroutine PIO_read_darray(data_file, varDesc, iodesc, array, iostat)
type (File_desc_t), intent(inout) :: data_file ! info about data file
type (var_desc_t), intent(inout) :: varDesc ! variable descriptor
type (io_desc_t), intent(inout) :: iosystem
intent(in) :: array ! array to be read currently integer, real*4 and real8         

types are supported, 1 dimension)
integer, intent(out) :: iostat ! error return code 

No fillval needed in this direction (holes not modified)



PIO in CAM
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PIO Success Stories

� PIO implementation in CCSM
– Atmosphere:  read and write history and restart;  all dycores
– Ocean:   read and write history and restart
– Land:    write history
– Sea Ice and Coupler:  in progress

� PIO being used in high-resolution coupled model.

� Backwards-compatible NetCDF mode has value-added
– Rearrangement to IO proc subset followed by gather/write one piece 

at a time.
– Avoids overflowing memory of root processor



PIO success stories

� High resolution atmosphere model test cases with the HOMME dynamical 
core.

Reading input data 
not possible without 
PIO!

Figure provided by Mark Taylor, Sandia National Lab



CAM-HOMME on BG/P 

Reading input 
data using PIO 
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CAM-HOMME with full 
atmospheric physics and 
aquaplanet surface.

Figure provided by Mark Taylor, Sandia National Lab



PIO Deployment

� Developed configure system for portability across all CCSM platforms and 
sites. 
– Supports a large set of options (Enable/disable MCT,Parallel 

NetCDF,NetCDF,MPI-IO,serial compatibility,MPI-2,diagnostic 
modes,...)

� In current use on
– Argonne BG/L, Intrepid (BG/P), Jazz (Intel,Linux)– Argonne BG/L, Intrepid (BG/P), Jazz (Intel,Linux)
– Blueice (Power5+,AIX), Bangkok (Intel,Linux)
– Jaguar (Opteron,XT4)
– Sandia cluser (Intel+Infiniband)

� PIO currently developed within CCSM repository
– Transitioning development to Google Code
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Future work

� Clean up documentation

� More unit tests/ system tests

� Understanding performance across zoo of parallel I/O hardware/software

� Add to rest of CCSM

� You will soon be able to download, use and help develop PIO!
– http://code.google.com/p/parallelio


