Source oriented GW parameterization in WACCM3

Jadwiga H. Richter
Rolando R. Garcia
Fabrizio Sassi

"If there is a hell, I am sure gravity wave tuning will be one of the main activities there!"

Rolando R. Garcia

Introduction:

- Gravity waves with horizontal wavelengths $10-1000 \mathrm{~km}$ have to be parameterized in GCMs
- Typically, a GW parameterization assumes:
- Spatially uniform GW source
- Temporally uniform GW source
- Same GW properties regardless of background conditions or location
- Arbitrarily prescribed momentum flux phase speed spectrum

WACCM 3:

- McFarlane (I987) orographic GW parameterization
- Lindzen (I98I) GW propagation parameterization
- Sassi, Boville, and Garcia GW source spectrum:
- wave amplitude: taubgnd $=7.0 \times 10-3$ Pa efficiency: 0.125
- momentum flux distribution: Gaussian in phase speed with width of $30 \mathrm{~m} / \mathrm{s}$ (centered on source level wind)
- Tuned latitudinal cycle
- Tuned seasonal cycle
- Launching height: 500 mb

URAP

Wind for Jan

WACCM 3:

WACCM 3:

New GW parameterization

- Removed the arbitrary source spectrum
- Going towards a source oriented approach
- Including waves generated by:

Orography: McFarlane (1987)
Convection: Beres et al. (2005)
Fronts: based on Charron and Manzini (2002)

- First attempt in a high-top GCM to go towards a source oriented GW specification

Beres et al. (2004)

- Based on linear theory and mesoscale modeling
- Builds on the Zhang and McFarlane (I995) convective paramterization

Determines Shape of Spectrum

Determines Wave Amplitudes

Beres et al. (2004)

Frontal GWs

- The Frontogenesis function of Hoskins (1982) is used to determine wave triggering

$$
\frac{1}{2} \frac{D|\nabla \theta|^{2}}{D t}=F
$$

- When a critical threshold of ' F ' is exceeded, GWs are launched
- Right now using F_critical $=0.75 \mathrm{e}-\mathrm{I} 5$
- Waves are launched at 600 mb - approximately frontal speed
- Waves are launched with fixed amplitude of I.0xI0-3 Pa
- Momentum flux phase speed spectrum is Gaussian

Frontal GWs

- Typical January region of Frontal wave launching

Source Level Momentum Flux

Interannual Variability

Interannual Variability

Northern Hemisphere Total at 100 mb

Westward MF

Eastward MF

WACCM3.5 January

OBS:

Mesopause:

WACCM3:

WACCM3.5:

130 K
91 km

130 K 91 km

WACCM3.5 July

OBS:

Mesopause:

137 K
84 km

WACCM3:

WACCM3.5:

135 K
91 km

132 K
91 km

WACCM 3.5:

OBS:

WACCM3:

WACCM3.5:
STDDEV of T Jan

SSW Frequency

Nov - Feb:
0.5
0.1
0.35
Nov - Mar:
0.6
0.1
0.5

Conclusions:

- We have successfully gone towards a source oriented GW parameterization in WACCM3.5
- We have removed the arbitrarily specified non-orographic wave source and replaced it with convectively and frontally triggered waves.
- There are still uncertainties (tuning knobs)in the parameterization, mainly related to characteristics of frontally generated waves
- The resulting middle atmospheric simulation is better in several regards than that ofWACCM3.

