Source oriented GW parameterization in WACCM3

Jadwiga H. Richter Rolando R. Garcia Fabrizio Sassi

"If there is a hell, I am sure gravity wave tuning will be one of the main activities there!"

Rolando R. Garcia

Introduction:

- Gravity waves with horizontal wavelengths 10 1000 km have to be parameterized in GCMs
- Typically, a GW parameterization assumes:
 - Spatially uniform GW source
 - Temporally uniform GW source
 - Same GW properties regardless of background conditions or location
 - Arbitrarily prescribed momentum flux phase speed spectrum

WACCM 3:

- McFarlane (1987) orographic GW parameterization
- Lindzen (1981) GW propagation parameterization
- Sassi, Boville, and Garcia GW source spectrum:
 - wave amplitude: taubgnd = $7.0 \times 10-3$ Pa efficiency: 0.125
 - momentum flux distribution: Gaussian in phase speed with width of 30 m/s (centered on source level wind)
 - Tuned latitudinal cycle
 - Tuned seasonal cycle
 - Launching height: 500 mb

WACCM Whole Atmosphere Community Climate Model

Community Climate System Model

URAP

WACCM 3:

New GW parameterization

- Removed the arbitrary source spectrum
- Going towards a source oriented approach
- Including waves generated by: Orography: McFarlane (1987) Convection: Beres et al. (2005)
 Fronts: based on Charron and Manzini (2002)
- First attempt in a high-top GCM to go towards a source oriented GW specification

Beres et al. (2004)

- Based on linear theory and mesoscale modeling
- Builds on the Zhang and McFarlane (1995) convective paramterization

Beres et al. (2004)

Frontal GWs

• The Frontogenesis function of Hoskins (1982) is used to determine wave triggering

$$\frac{1}{2} \frac{D|\nabla \theta|^2}{Dt} = F$$

- When a critical threshold of 'F' is exceeded, GWs are launched
- Right now using F_critical = 0.75e-15

- Waves are launched at 600 mb approximately frontal speed
- Waves are launched with fixed amplitude of 1.0x10-3 Pa
- Momentum flux phase speed spectrum is Gaussian

Frontal GWs

• Typical January region of Frontal wave launching

Source Level Momentum Flux

Interannual Variability

Interannual Variability

Northern Hemisphere Total at 100 mb

WACCM3.5 January

WACCM3:

WACCM3.5:

OBS:

Mesopause: 130 K 91 km

130 K 91 km

Community Climate System Model

136 K

WACCM3.5 July

WACCM3:

WACCM3.5:

OBS:

I 37 K 84 km

Community Climate System Model

135 K 91 km

Mesopause:

132 K 91 km

WACCM 3.5:

Conclusions:

- We have successfully gone towards a source oriented GW parameterization in WACCM3.5
- We have removed the arbitrarily specified non-orographic wave source and replaced it with convectively and frontally triggered waves.
- There are still uncertainties (tuning knobs)in the parameterization, mainly related to characteristics of frontally generated waves
- The resulting middle atmospheric simulation is better in several regards than that of WACCM3.

