

Quantifying uncertainties in future extremes using a perturbed land surface parameter experiment

Erich Fischer

Climate & Global Dynamics Division, NCAR, Boulder, CO

Thanks to: Dave Lawrence, Ben Sanderson, Keith Oleson and Jerry Meehl

Motivation

European heat wave 2003 was amplified by soil drying Contribution of feedback uncertain due to LSM parameterizations -> Uncertainties in projections due to LSM parameters

Project overview

CCSM workshop, June 16, 2009

Experimental setup

Model setup (motivated by climateprediction.net and QUMP)

- CAM/CLM 3.5 with slab ocean
- Simulations with 1xCO₂ (30 years) and 2xCO₂ (20 years)
- 5 poorly constrained CLM parameters
- different combinations of perturbed parameters (may interact nonlinearly)
- experiment includes 108 ensemble members -> more than 7000 model years of daily data!

Selected parameters

- Vegetation albedo: leaf albedo perturbed by +/- 20% for all PFTs
- Snow albedo: empirical constant in aging function -> faster and slower decrease in snow albedo
- Momentum roughness length (doubled, corresponds roughly to values used in the ECMWF LSM Tessel)
- Decay factor f in the calculation of subsurface runoff, which affects water table depth (moderate and strong increase of WT depth, based on Niu et al. 2005)
- v_{cmax} (maximum of carboxylation of Rubisco at 25°C), which controls photosynthesis and affects transpiration (Thornton et al. 2007)

$$V_{max} = \frac{1}{SLA \times CN_L} F_{LNR} \frac{1}{F_{NR}} a_R,$$

SLA: specific leaf area, ratio of leaf area to leaf mass CN_L: leaf carbon:nitrogen ratio (gC gN⁻¹)

Temperature response to 2xCO₂

Δ*Temp*_{Land} = 2.65*K Range: 2.4K-2.9K*

Global mean temperature vs. albedo

Summer temperature extremes

NCAR

Heat extremes (JJA 95th perc.)

 LSM parameters affect not only mean but also interannual to intraseasonal temperature variability!

Role of parameters for extremes (1xCO₂)

Mediterranean Basin

Role of parameters differs regionally (generally veg. albedo dominant)

Water table depth important over dry regions

NCAR

Response of heat extremes to 2xCO₂

Response of heat extremes to 2xCO₂

Total deviance explained = 36.4 %

Winter cold extremes

Cold extremes (DJF 5th percentile)

Preliminary results

CCSM workshop, June 16, 2009

Summer precipitation

Role of parameters (JJA precipitation)

Mediterranean Basin

00 0

0.8

o

0.9

00

ഠഠറയർ

നുള്ള സ്താ

0.7

simulated [mm]

00000000000

000

0000

യ തായ

o

0

0 0

- **Different parameters** dominant for precipitation than for temperature
- Water table depth is • dominant over arid regions; Vcmax dominates vegetated regions

Precipitation response to 2xCO₂ (JJA)

Central North America Range = 19.3% 10 ç

20

5 10

- Precipitation response varies between -7% and +12%
- Spans half of the CMIP3 range

-20

-10

0

Precipitation response to 2xCO₂ (JJA)

Preliminary results

CCSM workshop, June 16, 2009

Coupling CLM pert. exp. vs. CMIP3

• Range of correlations in CLM ensemble exceeds the range of CMIP3 models!

Note that simulation length is much shorter (-> larger spread)

Summary and outlook

- Uncertainties in CLM parameters contribute to relatively large model uncertainties particularly at regional scale
- CLM parameters have larger effect on extremes than on mean climate due to changes in variability
- Role of parameters differs between season, region and climate variables (temperature and precipitation)
- Snow albedo has dominant effect on global mean response
- Vcmax and water table depth are crucial for heat extremes and summer precipitation

Next step:

• Perform ensemble to quantifiy initial conditions uncertainties wrt parameter uncertainties