Springtime solar heating and reduced snow cover from carbonaceous particles

Mark Flanner¹ Charlie Zender² Peter Hess³ Natalie Mahowald³ Tom Painter⁴ Phil Rasch⁵ V Ramanathan⁶

¹ National Center for Atmospheric Research, Boulder CO

- ² University of California Irvine
- ³ Cornell University
- ⁴ University of Utah
- ⁵ Pacific Northwest National Laboratory
- ⁶ University of California San Diego

CCSM LMWG meeting June 16, 2009

Carbonaceous particles: Positive radiative forcing over snow

Smoke over the Canadian Arctic

Atmospheric aerosol forcing over pure snow

Top-of-atmosphere

- Mixtures with SSA<0.9999
 (λ=500nm) produce warming
- Small cooling from sulfate
- Warming from organic matter

Surface

- Large "dimming" from absorbing aerosols, but only a slight cooling effect because of snow's high reflectance
- Multiple scattering between snow and clouds/aerosols

Flanner et. al. (2009), Atmos. Chem. Phys.

3

Less absorptive

More absorptive

Snow albedo perturbation by black carbon

- BC absorptivity is ~5 orders of magnitude > ice
- Flux is highly actinic at snow surface
 - Typical green photon undergoes ~1000 scattering events before emerging from top of snowpack. Large path-length.
- Longer persistence in near-surface snow than atmosphere. Springtime surface accumulation.

Atmospheric aerosol forcing over dirty snow

- Snow darkening
 Increases TOA forcing
 Reverses the sign of surface forcing
 - (darkening > dimming)
- α: snow/atmosphere column burden ratio
 - Controlled by
 - Deposition efficiency
 - Meltwater removal removal from snow
 - Mean estimate is 0.07

 Over global snow: *darkening* 6x > *dimming*

Flanner et. al. (2009), Atmos. Chem. Phys. 5

Springtime susceptibility to snow changes

- Hemispheric solar energy incident on land snowpack peaks in March-May
- Time of maximum albedo feedback (*Hall and Qu*, 2006)
 Incident flux on sea-ice peaks in May-June

How do different forcing agents influence spring snow cover?

Equilibrium changes in spring snow cover NCAR Community Atmosphere Model 3.1 BC+OM emissions from *Bond et al.* (2004)

Eurasian springtime snow loss from BC+OM is comparable to that from CO₂
 Large snow losses simulated with BC in snow, but not with BC+OM exclusively in atmosphere

Observed springtime climate trends

Temperature

1979-2008 warming rate over springtime Eurasia is +0.64°C/decade, much smaller over N. America

- Spring snow cover losses:
 - Eurasia: 14%
 - North America: 7%

1979-2000 springtime hindcasts from CMIP3

Temperature trends

Green: CMIP3 coupled atmosphere-ocean simulations Light blue: CMIP3 forced-SST (AMIP) simulations

9

Springtime forcing from BC and dust

- Snow-averaged surface forcings:
 - Eurasia: +3.9 W/m²
 - North America: +1.2 W/m²
 - Not included in IPCC simulations
- BC emissions from Asia increased from ~1.6-2.6 Tg/yr during 1980-2000 (*Bond et al.*, 2007)

NCAR CAM model coupled with SNICAR

Flanner et. al. (2009), Atmos. Chem. Phys. 10

1979-2000 springtime hindcasts from CMIP3

Temperature trends

Green: Light blue: **Purple: Dark Blue:** CMIP3 coupled atmosphere-ocean simulations CMIP3 forced-SST (AMIP) simulations CAM/SNICAR without snow darkening CAM/SNICAR with snow darkening

Spatial patterns of temperature trends

12

Conclusions

- Nearly all aerosol mixtures exert a positive TOA radiative forcing over snow and ice
- "Darkening" from modest amounts of deposited particles outweighs "dimming" from suspended particles: Net positive surface forcing
- Springtime climate is uniquely susceptible to feedback: Maximum snow+insolation
- Eurasian spring snow cover responds as strongly to current BC+OM emissions as to 90 ppm ΔCO₂
- Transient snow darkening may explain some of model-observation discrepancy in Eurasian land warming trends

- Biases in snow cover trend persist