Atmospheric influences on Fram Strait sea ice export in observations and CCSM3

Maria Tsukernik¹ Clara Deser¹ Michael Alexander² Robert Tomas¹ Marika Holland¹ ¹NCAR,²NOAA

Fram Strait

primary region of sea ice export

Variable link

Courtesy of NASA

Data

- •1979-2006 daily data: 10227 days
- •NCEP Sea level pressure (SLP)
- Sea ice motion from Polar Pathfinder product
- Fram Strait sea ice motion time series:
 20°W 15°E, 79°- 81°N

Correlation pattern: An east-west dipole

✓ Barents and Greenland centers-of-actions

✓ SLP gradient across
 Fram Strait

✓ Northerly geostrophic wind anomalies

✓ Physically realistic

- ✓Synoptically observed
- ✓ Statistically significant

Daily EOFs

Daily EOFs computed for the Atlantic sector (90°W-90°E, 45-90°N)

Regression of SLP on sea ice motion in winter

✓ Very similar to yearround pattern

✓ East-west dipole

Regression of SLP on sea ice in winter and summer: An east-west dipole is present year-round

Coherence: correlation at different frequencies

✓Coherence values peak at 10-60 day band vertical dotted lines

✓ Phase near zero not shown

✓Coherence values drop after ~100 days

 ✓ Similar results for winters and summers not shown

99% significance is outlined by dashed gray line

Results I: daily data

 East-west SLP dipole pattern is crucial for sea ice transport

- Dipole forcing present throughout the year
 - winter relationship is slightly stronger
- Highest coherency on 10-60 day timescale
 - Monthly data cannot fully resolve this timescale

Regression of SLP on sea ice motion, monthly

- ✓ No east-west dipole
- ✓ No Greenland center
- ✓ Barents center-of-action
- ✓ SLP gradient across
 Fram Strait

Regression of SLP on sea ice motion, monthly

Regression of SLP on sea ice motion, monthly with and without the NAO (1st EOF)

Results II: monthly data

- NO east-west dipole pattern
 - Barents center-of-action
 - No significant relationship observed in summer
- Removal of the NAO reveals the dipole

Community Climate System Model 3.0

- Coupled climate model
- T85 resolution
- 20th century run and 21st century A1b run
 Natural and anthropogenic forcings
- •Two runs analyzed (b30.030a / b30.040b):
 - Monthly data: 1560/1200 months
 - ■SLP
 - Sea ice motion
 - Sea ice volume

Correlation b/w SLP and ice motion CCSM 3.0 20th century run 1870-1999

✓ Barents center of action

^{120E} ✓ Similar to observations

Regression of SLP on sea ice motion, monthly CCSM 3.0 20th century run 1870-1999

Note an increase in regression values (as compared to observations):

Regression of SLP on sea ice motion, monthly with and without the NAO (1st EOF) CCSM 3.0 20th century run 1870-1999

Results III: CCSM 20th century

- Sea ice motion and sea ice volume produce similar results
- Barents center-of-action is crucial in winter
- Summer shows a significant dipole
- NAO removal reveals an east-west dipole in winter

Correlation b/w SLP and sea ice motion CCSM 3.0 21st century A1b 2000-2099

Results IV and future directions:

21st century patterns are similar, but weaker

- Sea ice behavior changes
- Less atmospheric forcing required to flush out sea ice?
 - Results from observations and CCSM

Thank you !

Ice motion time series in CCM3

Courtesy of Marika Holland

Adding sea ice volume:

Correlation b/w ice motion and volume: 0.74

Ice motion time series in CCM3

Courtesy of Marika Holland

Seasonal variability in sea ice area

- Kwok et al. 2009
 - Satellite derived motion product 1978-2007
 - Winter outflow larger and more variable than summer

Long term variability in sea ice export

- Vinje, 2001
 - Monthly estimates: upward looking sonar + proxies
 - high interannual variability

SLP gradient index (SLPGI)

Time series

Correlation coefficient: 0.54

Lead/lag relationship between the SLPGI and sea ice motion

