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Context of this researchContext of this research

Polar singularity limits ability to effectively domain-
decompose in longitudedecompose in longitude
Long-term solution is to use more favorable grid
—cubed sphere (finite-volume, spectral element)

In near term (including IPCC AR5), we need to live with the 
longitude-latitude grid
Approach: add parallelism and address scaling bottlenecksApproach: add parallelism and address scaling bottlenecks
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CAM Throughput has Improved

We have more than doubled the performance of the

g p p

We have more than doubled the performance of the 
Community Atmosphere Model on the Cray XT4/5 and 
are seeing similar improvements on the IBM BG/P. This 
h b t th h bi ti f ddihas come about through a combination of adding 
additional parallelism, enabling different sections of 
CAM to execute at their own process count, 
implementing improved communication protocols  
particularly relevant at scale, and removing other 
scalability bottlenecksscalability bottlenecks.

*Throughput improvement is problem-dependent.
* Work carried out over past 2 5 years under SciDAC-2
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 Work carried out over past 2.5 years under SciDAC-2.



Improvements reported at AMWG 2008p p

We added additional parallelism and enabled different 
sections of code to execute at their own process countsections of code to execute at their own process count
—allow one vertical level per subdomain
—assign more (computational) processes to physics than 

dynamicsdynamics
—advect multiple tracers concurrently
— larger longitude-latitude than latitude-vertical 

d itidecomposition
—overlap of main dynamics and tracer advection 

subcycles

Mirin/Worley – CAM Throughput at Scale – SEWG 06/15/09 – Slide 4



Resulting scalability bottlenecksg y

Communication inefficiencies due to large number of 
messagesmessages
Less ability to hide communication latency
Inefficiencies computing global sumsp g g
Input/output inefficiencies
Memory overflows (in particular associated with 

i ti )communication)
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We have removed communication bottlenecks at scaleWe have removed communication bottlenecks at scale

Improvements to FV dynamics transposes (mod_comm)
—all-to-all optionall to all option
—hypercube-based (swap) ordering of communications
—ability to transpose 2 variables simultaneously
—ability to transpose arbitrary number of tracers—ability to transpose arbitrary number of tracers 

concurrently
—handshaking (wait to issue send until matching receive 

is issued)is issued)
— throttling (limit number of outstanding requests)
—blocking vs. non-blocking send

I t h d i h d ith th i d iImprovements go hand-in-hand with those in dynamics-
physics transposes and spectral dycore communications
Different code sections can use different options
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Communication bottlenecks at scale, cont.Communication bottlenecks at scale, cont.

Apply flow control (handshaking, throttling) to global gathers

In PIO layer, apply flow control to box rearranger and netcdf write

Introduction of handshaking could require throttling
— handshaking alleviates MPI buffer storage by controlling incominghandshaking alleviates MPI buffer storage by controlling incoming 

messages
— handshaking introduces additional messages, putting pressure on 

the available MPI storage for message accountingthe available MPI storage for message accounting
— throttling, by limiting the number of simultaneously active 

messages, alleviates pressure on MPI storage

The handshaking messages themsel es inc r cost; hence handshakingThe handshaking messages themselves incur cost; hence, handshaking 
should be used only when required

— handshaking is typically on by default only for gathers
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Example communications bottleneckExample communications bottleneck

FV 1-deg grid: transpose from 39x64 longitude-latitude decomposition 
to 64x13 latitude vertical decompositionto 64x13 latitude-vertical decomposition

— one-third of target tasks show order-of-magnitude larger elapsed 
time (overall code runs twice as slow)

d ibl Atl J d BG/P— reproducible on Atlas, Jaguar and BG/P
— the tasks that take longer are precisely the ones that are posting 

receive requests to source tasks who themselves are also target 
tasks (all tasks are source tasks; only 1/3 of tasks are target tasks)tasks (all tasks are source tasks; only 1/3 of tasks are target tasks)

— solution is handshaking: do not initiate send until target has 
communicated that it is ready to receive; this reduces contention

bl i l lik l t ith l i d iti— problem is less likely to occur with equal-size decompositions 
because scenario is better balanced; handshaking is usually not 
required in this case
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Diagram of communications bottleneckDiagram of communications bottleneck
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Only 1/3 of the target tasks have a source task that
itself is a target; resulting contention causes delay.



We have removed other scaling bottlenecksWe have removed other scaling bottlenecks

Fast reproducible distributed sum algorithm (replaces one-process-
computes algorithm)computes algorithm)

— uses 64-bit integer arithmetic to implement infinite precision algorithm
— more accurate than original floating point calculation

i l t d i h i d d i— implemented in physics and dynamics
— adopted in CCSM coupler/driver

Reproducible, non-transpose-based geopotential algorithm that eliminates 
real*16

— utilizes pipeline approach
— optionally replaces the transpose-based algorithm; optimal choice 

depends on platform, problem size and process count

Elimination of memory inefficiencies
— globally dimensioned arrays
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CAM with 4-way OpenMP on Cray XT4CAM with 4 way OpenMP on Cray XT4
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Breakdown of performance improvementBreakdown of performance improvement
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Breakdown of performance improvementBreakdown of performance improvement
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Improved throughput on Cray XT5 (vs OpenMP)Improved throughput on Cray XT5 (vs OpenMP)
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Fast reproducible distributed sumsFast reproducible distributed sums
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Performance improvement with trop_mozart chemistry
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High-resolution sectional aerosol simulation on BG/PHigh resolution sectional aerosol simulation on BG/P

We are hoping to carry out 0.5-deg and 0.25-deg sectional aerosol simulations on 
the LLNL 0.5PF Dawn BG/Pthe LLNL 0.5PF Dawn BG/P

— Dawn , which contains 36864 4-processor 4GB nodes, is the initial delivery 
system for the Sequoia project

A 0.25-deg case with trop mozart chemistry and 399 tracers executes at about 0.4 0. 5 deg case w t t op_ o a t c e st y a d 399 t ace s e ecutes at about 0.
simulated years per day (excluding I/O) using 26624 processors of jaguar

— assign 2 tasks per node since nodal Jaguar memory is double that of Dawn
— we successfully produce history and restart dumps using pio branch of CAM

A similar case, but using the CAM trunk with integrated PIO and having 350 
tracers instead of 399, executes at 0.09 simulated years per day (excluding I/O) on 
8192 nodes (32768 processors) of Dawn

We estimate computational throughput using 32768 nodes (131072 processors) of 
Dawn to be about 0.18 simulated years per day
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Utilization of PIO at high resolutionUtilization of PIO at high resolution

PIO is required to avoid memory overflow
t 64 bit tCDF f t— must use new 64-bit netCDF format

Performance is sensitive to configuration and architecture
— tune with respect to number of IO tasks, netcdf vs pnetcdf

At 0.25-deg with trop_mozart chemistry and 350 tracers, using 
pnetcdf:

— time on Jaguar to write restart dump = 4 min— time on Jaguar to write restart dump = 4 min.
— Dawn takes 13 min. for restart dump, 5 min. for history file
— the above times represent a single instantiation, hence are 

subject to changesubject to change
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Performance of FV dycores on Cray XT4Performance of FV dycores on Cray XT4

Simulated years per day vs number of tasks
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Upcoming tasks in support of AR5Upcoming tasks in support of AR5

Implement and evaluate additional OpenMP in FV dycore
— presently limited to number of levels per subdomainpresently limited to number of levels per subdomain

Establish default optimization settings as function of
— problem type
— resolutionresolution
— architecture

Rerun benchmark tests to understand costs of different physics and 
chemistry options for AR5 scenarioschemistry options for AR5 scenarios
Determine optimal processor configurations considering

— available machine cycles
— maximum time to solutionmaximum time to solution

Benchmark, evaluate and optimize CCSM4 release on AR5 target 
architectures
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Other plansOther plans

Characterize, optimize and evaluate performance at greater scale as 
CCSM evolves toward earth system model and targets emergingCCSM evolves toward earth system model and targets emerging 
petascale systems

Extend atmospheric model scalability improvements to other components

Exploit enhanced parallelism (e.g., Opteron SSE, BG/P double hummer)

Improve memory usage throughout model

C ti t f d l ti / ti i ti f d b dContinue support for and evaluation/optimization of dycores on cubed 
sphere grid

— HOMME spectral element dycore
— Finite-volume dycore
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