ouds V

Simulations Of Mesospheric

Chuck Bardeen National Center for Atmospheric Research **Joan Alexander Colorado Research Associates Eric Jensen** NASA Ames Research Center **CSSM** Workshop Whole Atmosphere Working Group **June 18, 2009**

the standard and show the

WACCM/CARMA PMC Microphysical Model

Gravity Wave Impact Upon Summer Temperatures, 70°N

Meteoric Dust near the Summer Polar Mesopause

PMCs vs. SOFIE: T, H₂O, B

PMCs vs. SOFIE: M, Re, N

Number Density Details

Subgrid Scale Gravity Waves

Rapp et al. [2002]

$\Delta T = T_0(m)\sin(mz + \phi_m - \omega t)e^{z/D}$

Rapp et al. [2002]

Random Every Time Step T, H₂O & B(3.064)

Random Every Time Step M, Re, N & Frequency

Random Every Time Step Number Density

Periodic Waves, Period = 417 min Number Density

Periodic Waves, Period = 417 min M, Re, N & Frequency

Summary

- Small changes in the gravity wave tuning can change the distribution of meteoric dust.
- Gravity wave tuning to observed temperatures results in PMC simulations that are in very good agreement with SOFIE & CIPS observations.
- Temperature variability from subgrid scale gravity waves can generate large number densities and decrease effective radius.
- Meteoric dust is still a vieble candidate as the main condensation nuclei for PMCs.
- WACCM/CARMA, a new modeling framework for clouds and aerosols, will become an optional component in WACCM.